首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2013年   1篇
  2010年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
A novel bioreactor with an internal adsorbent was developed for the simultaneous fermentation and recovery of prodigiosin-like pigment produced from Serratia sp. KH-95 as a model product in one bioreactor. The pigment concentration recovered in the internal adsorbent was 13.1 g l–1, which was 1.8-fold higher than that obtained in a bioreactor with an external adsorbent.  相似文献   
2.
It was recently established that fructose-1,6-bisphosphate (FBP) aldolase (FBA) and tagatose-1,6-bisphosphate (TBP) aldolase (TBA), two class II aldolases, are highly specific for the diastereoselective synthesis of FBP and TBP from glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP), respectively. In this paper, we report on a FBA from the thermophile Thermus caldophilus GK24 (Tca) that produces both FBP and TBP from C(3) substrates. Moreover, the FBP:TBP ratio could be adjusted by manipulating the concentrations of G3P and DHAP. This is the first native FBA known to show dual diastereoselectivity among the FBAs and TBAs characterized thus far. To explain the behavior of this enzyme, the X-ray crystal structure of the Tca FBA in complex with DHAP was determined at 2.2A resolution. It appears that as a result of alteration of five G3P binding residues, the substrate binding cavity of Tca FBA has a greater volume than those in the Escherichia coli FBA-phosphoglycolohydroxamate (PGH) and TBA-PGH complexes. We suggest that this steric difference underlies the difference in the diastereoselectivities of these class II aldolases.  相似文献   
3.
Recent progress in molecular computation suggests the possibility of pattern classification in vitro. Weighted sum is a primitive operation required by many pattern classification problems. Here we present a DNA-based molecular computation method for implementing the weighted-sum operation and its use for molecular pattern classification in a test tube. The weights of the classifier are encoded as the mixing ratios of the differentially labeled probe DNA molecules, which are competitively hybridized with the input-encoding target molecules to compute the decision boundary of classification. The computation result is detected by fluorescence signals. We experimentally verify the underlying weight encoding scheme and demonstrate successful discrimination of two-group labels of synthetic DNA mixture patterns. The method can be used for direct computation on biomolecular data in a liquid state.  相似文献   
4.
To better understand protein/material and cell/material interactions at the submolecular level, well-defined polymer brushes consisting of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) on silicon wafers were prepared by atom transfer radical polymerization (ATRP). Silicon wafers were treated with 3-(2-bromoisobutyryl)propyl dimethylchlorosilane (BDCS) to form a monolayer that acts as initiators for ATRP. Silicon-supported BDCS monolayers were soaked in a methanol/water mixture solution containing Cu(I)Br, bipyridine, and a sacrificial initiator. After MPC was added to the solution, ATRP was carried out for 18 h. The molecular weight and thickness of the PMPC brush layer on the silicon surface increased with an increase in the polymerization time. The dense polymer brushes were obtained by the "grafting from" system. By selective decomposition of the BDCS monolayer by UV light-irradiation, the PMPC brush region and the sizes were well controlled, resulting in fabricating micropatterns of the PMPC brushes. When the thickness of the PMPC brush layer was greater than 5.5 +/- 1.0 nm (3 h polymerization), serum protein adsorption and fibroblast adhesion were effectively reduced, i.e., proteins and cells could recognize such thin polymer brushes on the surface. In addition, the density of the adherent cells on the patterned PMPC brush surface could be controlled by changing the size of the pattern.  相似文献   
5.
The glgP gene encoding α-glucan phosphorylase (α-GP) from the thermopile Thermus caldophilus GK24 has been identified, cloned, and overexpressed in Escherichia coli and used to synthesize d-glucose-1-phospate (G1P) from an inexpensive starch. The enzyme, purified 6.5-fold, was isolated in 31% yield from the transformed E. coli, and gave a single band. The purified enzyme may exist as a homohexamer with an apparent molecular mass of a 550 kDa molecule, consisting of 90 kDa per subunit. The optimal pH and temperature were 7.0 and 70 °C in the α-GP reaction with starch producing G1P. Soluble starch (amylopectin, amylose) turned out to be a better substrate giving a higher yield of G1P than α-1,6-branched α-1,4-glucans (glycogen, potato starch, etc.). As a result, G1P was obtained in a good yield (47%, w/w) from the reaction containing 5% (w/v) soluble starch in 0.7 M potassium phosphate at pH 7.0. T. caldophilus α-GP shows a high tolerance (up to 0.7 M) of potassium phosphate and plays a critical role in shifting the reaction equilibrium in favor of G1P synthesis. The G1P product can be purified simply by ethanol precipitation, after removing the unreacted starch and inorganic phosphate by activated charcoal and magnesium acetate precipitation. It is concluded that T. caldophilus α-GP readily utilized in large scale synthesis of G1P.  相似文献   
6.
The bioconversion of linoleic acid (LA) to conjugated linoleic acid (CLA) was investigated to examine LA-adaptation ofBifidobacterium breve KCTC 3461 to additions of 1 to 5 mg/mL of LA overtime. To induce LA-adaptation,B. breve KCTC 3461 was treated with LA, according to three schemes. For LA-adaptedB. breve the maximum concentration of CLA, 300–350 μg/mL, was obtained in cys-MRS medium containing 1 mg/mL of LA. The CLA production significantly increased with increasing LA concentration, from 1 to 4 mg/mL, but the conversion of LA to CLA gradually decreased. The CLA production capability ofB. breve, and its tolerance, improved significantly with LA-adaptation. The addition of LA (1 mg/mL) into the culture broth after 24 h of cultivation in a 100-mL media bottle was most effective at promoting CLA production. In a 2.5-L stirred-tank bioreactor, the observed conversion and productivity of 56.6% and 35.4 μgml−1h−1, respectively, by LA-adaptedB. breve were approximately 6.6 and 9.8 times higher than those of LA-unadaptedB. breve.  相似文献   
7.
Molecular beacons are efficient and useful tools for quantitative detection of specific target nucleic acids. Thanks to their simple protocol, molecular beacons have great potential as substrates for biomolecular computing. Here we present a molecular beacon-based biomolecular computing method for quantitative detection and analysis of target nucleic acids. Whereas the conventional quantitative assays using fluorescent dyes have been designed for single target detection or multiplexed detection, the proposed method enables us not only to detect multiple targets but also to compute their quantitative information by weighted-sum of the targets. The detection and computation are performed on a molecular level simultaneously, and the outputs are detected as fluorescence signals. Experimental results show the feasibility and effectiveness of our weighted detection and linear combination method using molecular beacons. Our method can serve as a primitive operation of molecular pattern analysis, and we demonstrate successful binary classifications of molecular patterns made of synthetic oligonucleotide DNA molecules.  相似文献   
8.
In order to obtain high productivity of clavulanic acid, a newly-introduced carrier, polyurethane pellet (PUP) Z97-020 was used for the immobilization process. In a stirred-tank bioreactor, batch cultivation by Streptomyces clavuligerus KK immobilized on PUP Z97-020 gave about 3100 mg of clavulanic acid per litre, representing an increase of 200% in productivity compared with that by fed-batch cultivation of free cells (1500 mg/l). However, the clavulanic acid produced rapidly decomposed due to the pH change during batch cultivation. Fed-batch cultivation by immobilized S. clavuligerus KK gave an excellent level of clavulanic acid up to 3250 mg/l, a productivity increase of 220% compared with that by fed-batch cultivation of free cells. These results suggest that immobilization with PUP Z97-020 is a more effective process for the production of clavulanic acid and that the maintenance of pH by fed-batch cultivation with glycerol as a limiting substrate prevents the clavulanic acid from decomposing during the fermentation.  相似文献   
9.
A recombinant thermophilic Thermus caldophilus GK24 hexokinase, one of the ROK-type (repressor protein, open reading frames, and sugar kinase) proteins, exists uniquely as a 120 kDa molecule with four subunits (31 kDa), in contrast to eukaryotic and bacterial sugar kinases which are monomers or dimers. The optimal temperature and pH for the enzyme reaction are 70-80 degrees C and 7.5, respectively. This enzyme shows broad specificity toward glucose, mannose, glucosamine, allose, 2-deoxyglucose, and fructose. To understand the sugar specificity at a structural level, the enzyme-ATP/Mg2+-sugar binding complex models have been constructed. It has been shown that the sugar specificity is probably dependent on the interaction energy occurred by the positional proximity of sugars bound in the active site of the enzyme, which exhibits a tolerance to modification at C2 or C3 of glucose.  相似文献   
10.
Pseudomonas testosteroni CPW301 degraded phenol and 4-chlorophenol simultaneously, but degradation rates of these compounds were affected by 4-chlorophenol. Phenol increased the cell concentration and therefore the degradation efficiency of 4-chlorophenol was improved. Pseudomonas solanacearum TCP114 could degrade only 2,4,6-trichlorophenol. A defined mixed culture of P. testosteroni CPW301 and P. solanacearum TCP114 could treat phenol, 4-chlorophenol, and 2,4,6-trichlorophenol completely and overcome the inhibition of substrates to other microorganisms. The degradation capacity of the packed bed reactor (PBR) was higher than that of the continuous stirred tank reactor, but the PBR was unsuitable for oxygen-sensitive microorganisms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号