首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   3篇
  国内免费   3篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   6篇
  2019年   6篇
  2018年   5篇
  2017年   1篇
  2016年   6篇
  2015年   6篇
  2014年   11篇
  2013年   7篇
  2012年   21篇
  2011年   15篇
  2010年   9篇
  2009年   2篇
  2008年   11篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1992年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
1.
Protein arginine methyltransferase 5 (PRMT5) is a major enzyme responsible for generating monomethyl and symmetric dimethyl arginine in proteins. PRMT5 is essential for cell viability and development, and its overexpression is observed in a variety of cancers. In the present study, it is found that levels of PRMT5 protein and symmetric arginine dimethylation in colorectal cancer (CRC) tissues are increased compared to those in adjacent noncancerous tissues. Using immunoaffinity enrichment of methylated peptides combined with high‐resolution mass spectrometry, a total of 147 symmetric dimethyl‐arginine (SDMA) sites in 94 proteins are identified, many of which are RNA binding proteins and enzymes. Quantitative analysis comparing CRC and normal tissues reveals significant increase in the symmetric dimethylation of 70 arginine sites in 46 proteins and a decrease in that of four arginine sites in four proteins. Among the 94 proteins identified in this study, it is confirmed that KH‐type splicing regulatory protein is a target of PRMT5 and highly expressed in CRC tissues compared to noncancerous tissues. This study is the first comprehensive analysis of symmetric arginine dimethylation using clinical samples and extends the number of known in vivo SDMA sites. The data obtained are available via ProteomeXchange with the identifier PXD015653.  相似文献   
2.
Type 1 diabetes mellitus (T1DM) usually begins in childhood and adolescence and causes lifelong damage to several major organs including the brain. Despite increasing evidence of T1DM-induced structural deficits in cortical regions implicated in higher cognitive and emotional functions, little is known whether and how the structural connectivity between these regions is altered in the T1DM brain. Using inter-regional covariance of cortical thickness measurements from high-resolution T1-weighted magnetic resonance data, we examined the topological organizations of cortical structural networks in 81 T1DM patients and 38 healthy subjects. We found a relative absence of hierarchically high-level hubs in the prefrontal lobe of T1DM patients, which suggests ineffective top-down control of the prefrontal cortex in T1DM. Furthermore, inter-network connections between the strategic/executive control system and systems subserving other cortical functions including language and mnemonic/emotional processing were also less integrated in T1DM patients than in healthy individuals. The current results provide structural evidence for T1DM-related dysfunctional cortical organization, which specifically underlie the top-down cognitive control of language, memory, and emotion.  相似文献   
3.
Polymer bulk heterojunction solar cells based on low bandgap polymer:fullerene blends are promising for next generation low‐cost photovoltaics. While these solution‐processed solar cells are compatible with large‐scale roll‐to‐roll processing, active layers used for typical laboratory‐scale devices are too thin to ensure high manufacturing yields. Furthermore, due to the limited light absorption and optical interference within the thin active layer, the external quantum efficiencies (EQEs) of bulk heterojunction polymer solar cells are severely limited. In order to produce polymer solar cells with high yields, efficient solar cells with a thick active layer must be demonstrated. In this work, the performance of thick‐film solar cells employing the low‐bandgap polymer poly(dithienogermole‐thienopyrrolodione) (PDTG‐TPD) was demonstrated. Power conversion efficiencies over 8.0% were obtained for devices with an active layer thickness of 200 nm, illustrating the potential of this polymer for large‐scale manufacturing. Although an average EQE > 65% was obtained for devices with active layer thicknesses > 200 nm, the cell performance could not be maintained due to a reduction in fill factor. By comparing our results for PDTG‐TPD solar cells with similar P3HT‐based devices, we investigated the loss mechanisms associated with the limited device performance observed for thick‐film low‐bandgap polymer solar cells.  相似文献   
4.
One approach to deliver therapeutic agents, especially proteins, to the gastro-intestinal (GI) tract is to use commensal bacteria as a carrier. Genus Lactobacillus is an attractive candidate for use in this approach. However, a system for expressing exogenous proteins at a high level has been lacking in Lactobacillus. Moreover, it will be necessary to introduce the recombinant Lactobacillus into the GI tract, ideally by oral administration. Whether orally administered Lactobacillus can reach and reside in the GI tract has not been explored in neonates. In this study, we have examined these issues in neonatal rats. To achieve a high level of protein expression in Lactobacillus, we tested the impact of three promoters and two backbones on protein expression levels using mRFP1, a red fluorescent protein, as a reporter. We found that a combination of an L-lactate dehydrogenase (ldhL) promoter of Lactobacillus sakei with a backbone from pLEM415 yielded the highest level of reporter expression. When this construct was used to transform Lactobacillus casei, Lactobacillus delbrueckii and Lactobacillus acidophilus, high levels of mRFP1 were detected in all these species and colonies of transformed Lactobacillus appeared pink under visible light. To test whether orally administered Lactobacillus can be retained in the GI tract of neonates, we fed the recombinant Lactobacillus casei to neonatal rats. We found that about 3% of the bacteria were retained in the GI tract of the rats at 24 h after oral feeding with more recombinant Lactobacillus in the stomach and small intestine than in the cecum and colon. No mortality was observed throughout this study with Lactobacillus. In contrast, all neonatal rats died within 24 hours after fed with transformed E. coli. Taken together, our results indicate that Lactobacillus has the potential to be used as a vehicle for the delivery of therapeutic agents to neonates.  相似文献   
5.
One of the proposed mechanisms of carcinogenic action of TCDD (=dioxin) on breast cells is that it causes significant inhibition of proper differentiation of mammary duct epithelial cells and thereby increases the number of terminal end buds, which are susceptible to other carcinogens (Fenton et al., Toxicol Sci 2002;67:63-74; Brown et al., Carcinogenesis 1998; 19:1623-1629; Lamartiniere, J Mammary Gland Biol Neoplasia 2002;7:67-76). To address this topic, we selected MCF10A, a line of immortalized normal human breast epithelial cells as an in vitro model. An initial effort was made to optimize the cultural condition of MCF10A cells to promote the cell differentiation effect of insulin. Under this condition, TCDD clearly antagonized the action of insulin only in the presence of cholera toxin that is known to promote the differentiation of normal human breast epithelial cells. To test the hypothesis that TCDD-induced c-Src kinase activation is casually related to this compound's antagonistic action against insulin, we treated MCF10A cells with two c-Src blocking agents, an anti-Src antisense oligonucleotides blocker and a known specific inhibitor of c-Src kinase, PP-2 and studied the effect of insulin and TCDD on cell proliferation. The results showed that, in cells treated with either of these two c-Src blocking agents, the antagonistic effect of TCDD disappeared. It was also found that agents which specifically block the activation of ERK could also abrogate the action of TCDD to suppress insulin signaling. Together, these results indicate that the mechanism of the antagonistic action of TCDD on insulin signaling is mainly mediated through c-Src signaling through activation of ERK.  相似文献   
6.
7.
The aim of our investigation was to improve the effectiveness of DNA vaccines against herpes simplex virus (HSV) infection. We chose coimmunization with DNA encoding cytokines known to emphasize components of immune defense that best correlate with immune protection. These include interferon-producing T and NK cells and the IgG2a isotype immunoglobulin. Our results show that the coadministration of plasmid DNA encoding IL-12 or IL-18 along with glycoprotein B (gB) DNA improves immune induction. Recipients of the coimmunization procedure had elevated humoral as well as IFN-gamma-producing T cell responses and showed greater resistance to vaginal challenge with a lethal dose of HSV-1. The adjuvant effects were observed when the vaccines were administered either systemically or mucosally. By most assays, the adjuvant effect of IL-18 was superior to IL-12, although gB DNA plus IL-18 failed to induce levels of immunity achieved by UV-inactivated HSV immunization. Mucosal immunization proved as an effective means of inducing systemic immunity, but was less effective than the systemic route for inducing protection from vaginal challenge. Our results also demonstrated that protection from such challenges was mainly a property of IFN-gamma. Thus, immunized IFN-gamma-/- mice remained susceptible to challenges even while generating readily measurable immune responses. The approach of using DNA vaccines combined with DNA encoding cytokines holds promise and represents a potentially useful approach for vaccines.  相似文献   
8.
Ku S  Yoon H  Suh HS  Chung YY 《Planta》2003,217(4):559-565
The tapetum plays a crucial role in pollen development. This secretory tissue produces numerous nutritive proteins necessary for pollen maturation. The tapetum, whose cells undergo programmed cell death (PCD), is completely diminished by the time the pollen is fully mature. Our previous studies on a thermosensitive genic male-sterile (TGMS) rice (Oryza sativa L.) suggested that male-sterility was due to failure in pollen development. In this paper we describe how further analysis of the TGMS rice revealed that male-sterility is associated with premature PCD of the tapetum. Cytological observations of TGMS rice anthers at various developmental stages indicated that PCD initiates at an early stage of pollen development and continues until the tapetal cells are completely degraded, resulting in pollen collapse. Transmission electron microscopy showed the morphologically distinct hallmarks of apoptosis, including cytoplasmic shrinkage, membrane blebbing, and vacuolation. Identification of DNA fragmentation using the TUNEL assay supports the hypothesis that premature PCD is associated with male-sterility in the rice. The tissue-specific feature of the thermosensitive genic male-sterile phenotype is discussed with regard to PCD during anther development.  相似文献   
9.
Inulin fructotransferase (IFTase), a member of glycoside hydrolase family 91, catalyzes depolymerization of beta-2,1-fructans inulin by successively removing the terminal difructosaccharide units as cyclic anhydrides via intramolecular fructosyl transfer. The crystal structures of IFTase and its substrate-bound complex reveal that IFTase is a trimeric enzyme, and each monomer folds into a right-handed parallel beta-helix. Despite variation in the number and conformation of its beta-strands, the IFTase beta-helix has a structure that is largely reminiscent of other beta-helix structures but is unprecedented in that trimerization is a prerequisite for catalytic activity, and the active site is located at the monomer-monomer interface. Results from crystallographic studies and site-directed mutagenesis provide a structural basis for the exolytic-type activity of IFTase and a functional resemblance to inverting-type glycosyltransferases.  相似文献   
10.
Human prostate-specific antigen (PSA), a 33 kDa serine protease with comprehensive homology to glandular kallikrein, is secreted from prostatic tissue into the seminal fluid and enters into the circulation. The level of PSA increases in the serum of patients with prostatic cancer and hence is widely employed as a marker of the disease status. In particular, an enzymatically active PSA that is a form cleaved at the N-terminal seven-amino-acids prosequence, APLILSR, of proPSA may play an important roll in the progression of prostate cancer. Thus, the presence of the active form would selectively discriminate the cancer from benign prostatic hyperplasia. In this study, we developed a convenient purification method for the acquisition of active PSA and proPSA. Recombinant proPSA and active PSA were expressed directly in Escherichia coli, easily and efficiently isolated from inclusion bodies, refolded, and purified. Moreover, the enzymatic activity of the recombinant active PSA was confirmed as serine protease using chromogenic chymotrypsin substrate. This purified active PSA could be further applied to scrutinize the biological or conformational characteristics of the protein and to develop specific diagnostic and/or therapeutic agents against prostate cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号