首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   10篇
  2022年   2篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   6篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  1998年   1篇
排序方式: 共有44条查询结果,搜索用时 156 毫秒
1.

Earlier studies on fructose laurate ester products have shown that recombinant Pichia pastoris displaying Candida antarctica lipase B (CALB) on the cell surface acts as an efficient whole-cell biocatalyst for sugar ester production from fructose and lauric acid in an organic solvent. The effects of various reaction factors, including solvent composition, substrate molar ratio, enzyme dose, temperature and water activity, on esterification catalyzed by the CALB-displaying P. pastoris whole-cell biocatalyst were examined in the present study. Under the preferred reaction conditions, specifically, 5 mL organic solvent mixture of 2-methyl-2-butanol/DMSO (20% v/v), 2 mmol fructose with a lauric acid to fructose molar ratio of 2:1, 0.3 g whole-cell biocatalyst (1,264 U/g dry cell) with an initial water activity of 0.11, 1.2 g 4Å molecular sieve, reaction temperature of 55oC and 200 rpm stirring speed, the fructose mono laurate ester yield was 78% (w/w). The CALBdisplaying P. pastoris whole-cell biocatalyst exhibited good operational stability, with an evident increase, rather than decrease, in relative activity after the continuous recover and reuse cycle. The relative activity of the biocatalyst remained 50% higher than that of the first batch, even following reuse for 15 batches. Our results collectively indicate that the CALB-displaying P. pastoris whole-cell biocatalyst may be potentially utilized in lieu of free or immobilized enzyme to effectively produce non-ionic surfactants such as fatty acid sugar esters, offering the significant advantages of cost-effectiveness, good operational stability and mild reaction conditions.

  相似文献   
2.
Using the event-related optical signal (EROS) technique, this study investigated the dynamics of semantic brain activation during sentence comprehension. Participants read sentences constituent-by-constituent and made a semantic judgment at the end of each sentence. The EROSs were recorded simultaneously with ERPs and time-locked to expected or unexpected sentence-final target words. The unexpected words evoked a larger N400 and a late positivity than the expected ones. Critically, the EROS results revealed activations first in the left posterior middle temporal gyrus (LpMTG) between 128 and 192 ms, then in the left anterior inferior frontal gyrus (LaIFG), the left middle frontal gyrus (LMFG), and the LpMTG in the N400 time window, and finally in the left posterior inferior frontal gyrus (LpIFG) between 832 and 864 ms. Also, expected words elicited greater activation than unexpected words in the left anterior temporal lobe (LATL) between 192 and 256 ms. These results suggest that the early lexical-semantic retrieval reflected by the LpMTG activation is followed by two different semantic integration processes: a relatively rapid and transient integration in the LATL and a relatively slow but enduring integration in the LaIFG/LMFG and the LpMTG. The late activation in the LpIFG, however, may reflect cognitive control.  相似文献   
3.
4.
黑曲霉表面展示南极假丝酵母脂肪酶B(CALB)可有效应用于食品、化妆品、医药等行业。以黑曲霉Aspergillus niger SH-1为宿主细胞构建诱导型糖化酶基因启动子表面展示CALB,在较高浓度葡萄糖碳源的发酵中CALB表达会受到抑制,发酵后期菌体容易出现菌丝断裂和展示酶活力下降等问题。采用组成型3-磷酸甘油醛脱氢酶基因启动子替代诱导型糖化酶基因启动子的细胞表面展示CALB黑曲霉菌株可有效解决上述问题,该菌株不但可以利用葡萄糖,而且还能利用木糖为发酵碳源,以木糖为碳源发酵在144 h展示酶水平达到1 100.28 U/g。文中探讨了甘蔗渣水解液发酵生产黑曲霉表面展示CALB,初步达到预期的结果,为甘蔗渣的综合利用提供了新途径。  相似文献   
5.
α-Hemoglobin (αHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with αHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting αHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in αHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro30, in loop 1 of AHSP. Mutation of Pro30 to a variety of residue types results in reduced ability to convert αHb. In complex with αHb, AHSP Pro30 adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in αHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the αHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of αHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops.Mammalian adult hemoglobin (HbA)5 is a tetramer of two αHb and two βHb subunits, which is produced to extremely high concentrations (∼340 mg/ml) in red blood cells. Numerous mechanisms exist to balance and coordinate HbA synthesis in normal erythropoiesis, and problems with the production of either HbA subunit give rise to thalassemia, a common cause of anemia worldwide. Previously, we identified α-hemoglobin stabilizing protein (AHSP) as an accessory factor in normal HbA production (1). AHSP forms a dimeric complex with αHb (see Fig. 1A) (2) but does not interact with βHb or HbA. AHSP also binds heme-free (apo) αHb (3) and may serve functions in both the folding of nascent αHb (4) and the detoxification of excess αHb that remains following HbA assembly (2, 5). Mice carrying an Ahsp gene knock-out display mild anemia, ineffective erythropoiesis, and enhanced sensitivity to oxidative stress (1, 6), features also observed in β-thalassemia patients due to the cytotoxic effects of free αHb.Open in a separate windowFIGURE 1.Summary of αHb·AHSP interactions. A, the αHb·AHSP complex(PDB code 1Z8U) (2). The interface is formed from helices 1 and 2 and the intervening loop 1 (green) of AHSP, together with helices G-H and the B-C corner of αHb (cyan). B, detailed views of the heme binding site of αHb as it appears in oxy-HbA (PDB code 1GZX) (69) and the final bis-histidyl αHb·AHSP complex (PDB code 1Z8U) with two histidine ligands to the iron. Typical visible absorption spectra in the region 450–700 nm are shown.Free αHb promotes the formation of harmful reactive oxygen species as a result of reduction/oxidation reactions involving the heme iron (7, 8). Reactive oxygen species can damage heme, αHb, and other cellular structures, resulting in hemoglobin precipitates and death of erythroid precursor cells (912). The presence of AHSP may explain how cells tolerate the slight excess of αHb that is observed in normal erythropoiesis, which is postulated to inhibit the formation of non-functional βHb tetramers, thus providing a robust mechanism for achieving the correct subunit stoichiometry during HbA assembly (13).Structural and biochemical studies have begun to elucidate the molecular mechanism by which AHSP detoxifies αHb. AHSP binds to oxygenated αHb to generate an initial complex that retains the oxy-heme, as evidenced by a characteristic visible absorption spectrum (see Fig. 1B, middle) and resonance Raman spectrum (5). This initial oxy-αHb·AHSP complex then converts to a low spin Fe3+ complex (2), in which the heme iron is bound at both axial positions by the side chains of His58 and His87 from αHb (see Fig. 1B, right). The formation of this complex inhibits αHb peroxidase activity and heme loss (2). Bis-histidyl heme coordination is becoming increasingly recognized as a feature of numerous vertebrate and non-vertebrate globins (14) and has been shown previously to confer a relative stabilization of the Fe3+ over the Fe2+ oxidation state (1517). Although bis-histidyl heme coordination has previously been detected in solutions of met-Hb, formed through spontaneous autoxidation of Hb (1821), the bishis-αHb·AHSP complex provides the first evidence that the bis-histidyl heme may play a positive functional role in Hb biochemistry by inhibiting the production of harmful reactive oxygen species.Despite its potential importance, the mechanism by which AHSP influences heme coordination in its binding partner is still unknown. As shown in Fig. 1A, AHSP binds αHb at a surface away from the heme pocket, and thus structural changes must somehow be transmitted through the αHb protein. It is intriguing that the free AHSP protein switches between two alternative conformations linked to cis/trans isomerization of the Asp29-Pro30 peptide bond in loop 1 (22) and that, in complex with αHb, this loop is located at the αHb·AHSP interface (see Fig. 1A). Peptide bonds preceding proline residues are unique in that the cis or trans bonding conformations have relatively similar stabilities (23), allowing an interconversion between these conformations that can be important for protein function (24, 25). Previous x-ray crystal structures of αHb·AHSP complexes have been obtained only with a P30A mutant of AHSP, in which isomerization is abolished and the Asp29-Ala30 peptide bond adopts a trans conformation, leaving the potential structural and functional significance of the evolutionarily conserved Pro30 undisclosed. Here, we demonstrate a functional role for AHSP Pro30 in conversion of oxy-αHb to the bis-histidyl form and identify a specific structural role for a cis Asp29-Pro30 peptide bond in this process. From a mechanistic understanding of how AHSP promotes formation of bis-histidyl αHb, we may eventually be able to engineer AHSP function as a tool in new treatments for Hb diseases such as β-thalassemia.  相似文献   
6.
酵母表面展示脂肪酶合成己二酸二异辛酯   总被引:2,自引:0,他引:2  
展示酶的酵母细胞既具有固定化酶的优点,又有制备简单、成本较低的特点.采用表面展示南极假丝酵母脂肪酶B (Candida antarctica lipase B,CALB)的毕赤酵母细胞催化合成己二酸二异辛酯(Diisooctyl adipate,DIOA),对该反应体系进行优化,并实现了初步工艺放大制备.经条件优化后,在10mL反应体系中,DIOA的产率可达85.0%.该工艺放大到200mL反应体系时,DIOA产率可达97.8%.经减压蒸馏,DIOA纯度可达到98.2%.该酵母表面展示脂肪酶在合成绿色润滑油己二酸二异辛酯中具有良好应用前景.  相似文献   
7.
【背景】香蕉枯萎病是香蕉生产上的毁灭性病害,生物防治是遏制该病害发生的有效手段。在前期的研究中,从健康香蕉根际土壤中分离获得一株对香蕉枯萎病具有良好盆栽防治效果的生防菌——米修链霉菌(Streptomyces misionensis) TF78,但其对香蕉枯萎病的田间生防潜力和对土壤微生物环境的影响尚不清楚。【目的】评价米修链霉菌TF78对香蕉枯萎病的田间防治效果,明确其对香蕉根际土壤微生物群落的影响。【方法】选取两块发病香蕉园,测定该生防菌株对香蕉枯萎病的防治效果,并利用扩增子测序技术分析施用菌剂组和空白对照组共12份香蕉根际土壤的微生物多样性和丰度。【结果】米修链霉菌TF78对两块香蕉园的田间防效分别达55.30%和45.32%。该生防菌株处理组的物种稀释曲线坡度大于空白对照组,并显著富集了优势种群梳霉门(Kickxellomycota),消减了绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)和苔藓杆菌(Bryobacter)的丰度,对土壤中优势种群变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、芽单胞菌门(Gemmatimonadetes)及木霉属(Trichoderma)、鞘氨醇单胞菌属(Sphingomonas)、寡养单胞菌属(Stenotrophomonas)和芽孢杆菌属(Bacillus)的相对丰度影响不显著。【结论】米修链霉菌TF78塑造了不利于香蕉枯萎病菌Fusarium oxysporum f.sp.cubense存活的土壤环境,有效降低了田间香蕉枯萎病的发生,同时对土壤中大部分具有重要生态功能和抑菌功能的优势微生物种群影响不显著。该研究结果为米修链霉菌TF78的进一步开发应用奠定了基础。  相似文献   
8.
9.
Lv Y  Liao J  Wu Z  Han S  Lin Y  Zheng S 《Journal of bacteriology》2012,194(3):742-743
We report the genome sequence of Corynebacterium glutamicum ATCC 14067 (once named Brevibacterium flavum), which is useful for taxonomy research and further molecular breeding in amino acid production. Preliminary comparison with those of the reported coryneform strains revealed some notable differences that might be related to the difficulties in molecular manipulation.  相似文献   
10.
利用表面展示南极假丝酵母脂肪酶B(Candida antarctica lipase B,CALB)的毕赤酵母细胞为全细胞催化剂,以葡萄糖为酰基受体,月桂酸为酰基供体,在非水相体系中催化合成糖酯。用硅胶柱层析对产物进行初提,再用制备液相色谱进一步分离纯化,并用高效液相色谱-质谱鉴定纯品性质。对该酶法合成糖脂反应体系进行了优化,其中考察了有机溶剂种类、复合溶剂体系中二甲基亚砜(DMSO)体积百分比、酶量、底物摩尔比、水活度和温度等几个影响酯化反应的因素。结果表明:在5mL反应体系中,以叔戊醇/二甲基亚砜(DMSO30%,V/V)为反应介质,添加初始水活度为0.11的全细胞催化剂0.5g,葡萄糖0.5mmol/L,月桂酸1.0mmol/L,60°C下反应72h后,葡萄糖月桂酸单酯的转化率达到48.7%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号