首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2012年   1篇
  2011年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
The nutritional quality of crop plants is determined by their content in essential amino acids provided in food for humans or in feed for monogastric animals. Amino acid composition of crop–based diets can be improved via manipulation of the properties of key enzymes of amino acid biosynthetic pathways by mutation and transformation. We focused on the aspartate-derived amino acid pathway producing four essential amino acids: lysine, threonine, isoleucine and methionine. Genes encoding aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS) that operate as key genes of the aspartate pathway have been cloned from Arabidopsis. Genetic and molecular studies revealed that at least five different ak genes are represented. Some of them were characterized in terms of gene and promoter structure, developmental expression and regulatory properties. In the case of dhdps, two quite identical genes have been identified and characterized at expression level. Mutated genes encoding a fully feedback-insensitive form of the DHDPS enzyme were obtained from Nicotiana sylvestris and Arabidopsis. Several chimeric constructs harbouring this mutated allele under the control of constitutive or seed-specific promoters were transferred via Agrobacterium or biolistics in various plant species. In all cases, lines with significant increase of free lysine content were obtained in vegetative organs, but the impact of the transgene in seeds is limited due to the presence of an active catabolic enzyme, lysine ketoreductase. These results show that, although dealing with a complex, highly regulated pathway, the overexpression of a single gene encoding a feedback-insensitive form of the key enzyme DHDPS exerts a significant effect on the carbon flux through the aspartate pathway towards lysine production.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号