首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   10篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2005年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1990年   7篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
The characteristics of actinidin (EC 3.4.22.14) and papain (EC 3.4.22.2), two cysteine proteinases whose catalytic-site regions appear to superimpose to a degree that approaches atomic co-ordinate accuracy of both crystal structures, were evaluated by determining (a) the pH-dependence in acid media of the acylation process of the catalytic act (k+2/Ks) using N alpha-benzoyl-L-arginine p-nitroanilide (L-Bz-Arg-Nan) as substrate and (b) the sensitivity of the reactivity of the catalytic-site thiol group and its pH-dependence to structural change in small, thiol-specific, two-protonic-state reactivity probes (2,2'-dipyridyl disulphide and methyl 2-pyridyl disulphide) where enzyme-probe contacts should be restricted to areas close to the catalytic site. Distortion of the catalytic sites of the two enzymes at pH less than 4 was evaluated over time-scales appropriate for both stopped-flow reactivity probe kinetics (less than or equal to 1-2 s) and steady-state substrate catalysis kinetics (3-5 min) by using the 2,2'-dipyridyl disulphide monocation as a titrant for non-distorted catalytic sites. This permitted a lower pH limit to be defined for valid kinetic analysis of both types. The behaviour of the enzymes at pH less than 4 requires a kinetic model in which the apparently biomolecular reaction of enzyme with probe reagent is separated from the process leading to loss of conformational integrity by a potentially reversible step. The acylation of actinidin with L-Bz-Arg-Nan in acidic media occurs in two protonic states, one produced by raising the pH across pKa less than 4 which probably characterizes the formation of -S-/-ImH+ ion pair (pKa approx. 3) and the other, of higher reactivity, produced by raising the pH across pKa 5.5, which may characterize rearrangement of catalytic-site geometry. The pH-dependence of the acylation of papain by L-Bz-Arg-Nan is quite different and is not influenced by protonic dissociation with pKa values in the range 5-6. The earlier conclusion that the acylation of papain depends on two protonic dissociations each with pKa approx. 4 was confirmed. This argument is now more firmly based because titration with 2,2'-dipyridyl disulphide permits the loss of conformational integrity to be taken into account in the analysis of the kinetic data at very low pH. Methyl 2-pyridyl disulphide was synthesized by reaction of pyridine-2-thione with methyl methanethiolsulphonate and its pKa at I = 0.1 was determined by spectral analysis at 307 nm to be 2.8.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
2.
1. The pH-dependence of the second-order rate constant (k) for the reaction of actinidin (EC 3.4.22.14) with 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide was determined and the contributions to k of various hydronic states were evaluated. 2. The data were used to assess the consequences for transition-state geometry of providing P2/S2 hydrophobic contacts in addition to hydrogen-bonding opportunities in the S1-S2 intersubsite region. 3. The P2/S2 contacts (a) substantially improve enzyme-ligand binding, (b) greatly enhance the contribution to reactivity of the hydronic state bounded by pKa 3 (the pKa characteristic of the formation of catalytic-site-S-/-ImH+ state) and pKa 5 (a relatively minor contributor in reactions that lack the P2/S2 contacts), such that the major rate optimum occurs at pH 4 instead of at pH 2.8-2.9, and (c) reveal the kinetic influence of a pKa approx. 6.3 not hitherto observed in reactions of actinidin. 4. Possibilities for the interplay of electrostatic effects and binding interactions in both actinidin and papain (EC 3.4.22.2) are discussed.  相似文献   
3.
Ca2+ dissociation from troponin causes cessation of muscle contraction by incompletely understood structural mechanisms. To investigate this process, regulatory site Ca2+ binding in the NH2-lobe of subunit troponin C (TnC) was abolished by mutagenesis, and effects on cardiac troponin dynamics were mapped by hydrogen-deuterium exchange (HDX)-MS. The findings demonstrate the interrelationships among troponin''s detailed dynamics, troponin''s regulatory actions, and the pathogenesis of cardiomyopathy linked to troponin mutations. Ca2+ slowed HDX up to 2 orders of magnitude within the NH2-lobe and the NH2-lobe-associated TnI switch helix, implying that Ca2+ greatly stabilizes this troponin regulatory region. HDX of the TnI COOH terminus indicated that its known role in regulation involves a partially folded rather than unfolded structure in the absence of Ca2+ and actin. Ca2+-triggered stabilization extended beyond the known direct regulatory regions: to the start of the nearby TnI helix 1 and to the COOH terminus of the TnT-TnI coiled-coil. Ca2+ destabilized rather than stabilized specific TnI segments within the coiled-coil and destabilized a region not previously implicated in Ca2+-mediated regulation: the coiled-coil''s NH2-terminal base plus the preceding TnI loop with which the base interacts. Cardiomyopathy-linked mutations clustered almost entirely within influentially dynamic regions of troponin, and many sites were Ca2+-sensitive. Overall, the findings demonstrate highly selective effects of regulatory site Ca2+, including opposite changes in protein dynamics at opposite ends of the troponin core domain. Ca2+ release triggers an intramolecular switching mechanism that propagates extensively within the extended troponin structure, suggests specific movements of the TnI inhibitory regions, and prominently involves troponin''s dynamic features.  相似文献   
4.
1. 2-(N'-Acetyl-D-phenylalanylamino)ethyl 2'-pyridyl disulphide (compound I) [m.p. 123-124 degrees C; [alpha]20D -7.1 degrees (c 0.042 in methanol)] was synthesized, and the results of a study of the pH-dependence of the second-order rate constant (k) for its reaction with the catalytic-site thiol group of papain (EC 3.4.22.2), together with existing kinetic data for the analogous reaction of the L-enantiomer (compound II), were used to evaluate the consequences for transition-state geometry of the difference in chirality at the P2 position of the probe molecule. 2. The kinetic data suggest that the D-enantiomer binds approx. 40-fold less tightly to papain than the L-enantiomer but that the binding-site--catalytic-site signalling that results in a (His-159)-Im(+)-H-assisted transition state occurs equally effectively in the interaction of the former probe as in that of the latter. This results in pH-k profiles for the reactions of both enantiomers each characterized by four macroscopic pKa values (3.7-3.9, 4.1-4.3, 7.9-8.3 and 9.4-9.5) in which k is maximal at pH approx. 6 where the -Im(+)-H-assisted transition state is most fully developed. 3. Model building indicates that both enantiomers can bind to papain such that the phenyl ring of the N-acetylphenylalanyl group makes hydrophobic contacts in the binding pocket of the S2 subsite with preservation of the three hydrogen-bonding interactions involving the substrate analogue reagent and (Asp-158) C = O, (Gly-66) C = O, and (Gly-66)-N-H of papain. Earlier predictions that binding of N-acyl-D-phenylalanine derivatives to papain would be prevented on steric grounds [Berger & Schechter (1970) Philos. Trans. R. Soc. London B 257, 249-264; Lowe & Yuthavong (1971) Biochem. J. 124, 107-115; Lowe (1976) Tetrahedron 32, 291-302] were based on assumed models that are not consistent with the X-ray-diffraction data for papain inhibited by alkylation of Cys-25 with N-benzyloxycarbonyl-Phe-Ala-chloromethane [Drenth, Kalk & Swen (1976) Biochemistry 15, 3731-3738]. 4. The possibility that the kinetic expression of P2-S2 stereospecificity may depend on the nature of the chemistry occurring in the catalytic site of papain is discussed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
5.
6.
7.
Troponin is a pivotal regulatory protein that binds Ca(2+) reversibly to act as the muscle contraction on-off switch. To understand troponin function, the dynamic behavior of the Ca(2+)-saturated cardiac troponin core domain was mapped in detail at 10 °C, using H/D exchange-mass spectrometry. The low temperature conditions of the present study greatly enhanced the dynamic map compared with previous work. Approximately 70% of assessable peptide bond hydrogens were protected from exchange sufficiently for dynamic measurement. This allowed the first characterization by this method of many regions of regulatory importance. Most of the TnI COOH terminus was protected from H/D exchange, implying an intrinsically folded structure. This region is critical to the troponin inhibitory function and has been implicated in thin filament activation. Other new findings include unprotected behavior, suggesting high mobility, for the residues linking the two domains of TnC, as well as for the inhibitory peptide residues preceding the TnI switch helix. These data indicate that, in solution, the regulatory subdomain of cardiac troponin is mobile relative to the remainder of troponin. Relatively dynamic properties were observed for the interacting TnI switch helix and TnC NH(2)-domain, contrasting with stable, highly protected properties for the interacting TnI helix 1 and TnC COOH-domain. Overall, exchange protection via protein folding was relatively weak or for a majority of peptide bond hydrogens. Several regions of TnT and TnI were unfolded even at low temperature, suggesting intrinsic disorder. Finally, change in temperature prominently altered local folding stability, suggesting that troponin is an unusually mobile protein under physiological conditions.  相似文献   
8.
Depletion of glutathione in the substantia nigra is one of the earliest changes observed in Parkinson's disease (PD) and could initiate dopaminergic neuronal degeneration. Nevertheless, experimental glutathione depletion does not result in preferential toxicity to dopaminergic neurons either in vivo or in vitro. Moreover, dopaminergic neurons in culture are preferentially resistant to the toxicity of glutathione depletion, possibly owing to differences in cellular glutathione peroxidase (GPx1) function. However, mesencephalic cultures from GPx1-knockout and wild-type mice were equally susceptible to the toxicity of glutathione depletion, indicating that glutathione also has GPx1-independent functions in neuronal survival. In addition, dopaminergic neurons were more resistant to the toxicity of both glutathione depletion and treatment with peroxides than nondopaminergic neurons regardless of their GPx1 status. To explain this enhanced antioxidant capacity, we hypothesized that tetrahydrobiopterin (BH(4)) may function as an antioxidant in dopaminergic neurons. In agreement, inhibition of BH(4) synthesis increased the susceptibility of dopaminergic neurons to the toxicity of glutathione depletion, whereas increasing BH(4) levels completely protected nondopaminergic neurons against it. Our results suggest that BH(4) functions as a complementary antioxidant to the glutathione/glutathione peroxidase system and that changes in BH(4) levels may contribute to the pathogenesis of PD.  相似文献   
9.
1. 2-(N'-Acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide [compound (III)] and 2-(acetamido)ethyl 2'-pyridyl disulphide [compound (IV)] were synthesized by acylation of the common intermediate, 2-aminoethyl 2'-pyridyl disulphide, to provide examples of chromogenic thiol-specific substrate-derived two-protonic-state electrophilic probe reagents. These two reagents, together with n-propyl 2-pyridyl disulphide [compound (II)], provide structural variation in the non-pyridyl part of the molecule from a simple hydrocarbon side chain in compound (II) to a P1-P2 amide bond in compound (IV) and further to both a P1-P2 amide bond and a hydrophobic side chain (of phenylalanine) at P2 as a potential occupant of S2 subsites. 2. These disulphides were used as reactivity probes to investigate specificity and binding-site-catalytic-site signalling in a number of cysteine proteinases by determining (a) the reactivity at pH 6.0 at 25 degrees C at I 0.1 of compound (III) (a close analogue of a good papain substrate) towards 2-mercaptoethanol, benzimidazol-2-ylmethanethiol [compound (V), as a minimal catalytic-site model], chymopapains B1-B3, chymopapain A, papaya proteinase omega, actinidin, cathepsin B and papain, (b) the effect of changing the structure of the probe as indicated above on the reactivities of compound (V) and of the last five of these enzymes, and (c) the forms of pH-dependence of the reactivities of papain and actinidin towards compound (III). 3. The kinetic data suggest that reagents of the type investigated may be sensitive probes of molecular recognition features in this family of enzymes and are capable not only of detecting differences in binding ability of the various enzymes but also of identifying enzyme-ligand contacts that provide for binding-site-catalytic-site signalling mechanisms. 4. The particular value of this class of probe appears to derive from the possibility of activating the 2-mercaptopyridine leaving group not only by formal protonation, as was recognized previously [see Brocklehurst (1982) Methods Enzymol. 87C, 427-469], but also by hydrogen-bonding to the pyridyl nitrogen atom when the appropriate geometry in the catalytic site is provided by enzyme-ligand contacts involving the non-pyridyl part of the molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
10.
1. The influence on the reactivities of the catalytic sites of papain (EC 3.4.22.2) and actinidin (3.4.22.14) of providing for interactions involving the S1-S2 intersubsite regions of the enzymes was evaluated by using as a series of thiol-specific two-hydronic-state reactivity probes: n-propyl 2-pyridyl disulphide (I) (a 'featureless' probe), 2-(acetamido)ethyl 2'-pyridyl disulphide (II) (containing a P1-P2 amide bond), 2-(acetoxy)ethyl 2'-pyridyl disulphide (III) [the ester analogue of probe (II)] and 2-carboxyethyl 2'-pyridyl disulphide N-methylamide (IV) [the retroamide analogue of probe (II)]. Syntheses of compounds (I), (III) and (IV) are reported. 2. The reactivities of the two enzymes towards the four reactivity probes (I)-(IV) and also that of papain towards 2-(N'-acetyl-L-phenylalanylamino)ethyl 2'-pyridyl disulphide (VII) (containing both a P1-P2 amide bond and an L-phenylalanyl side chain as an occupant for the S2 subsite), in up to four hydronic (previously called protonic) states, were evaluated by analysis of pH-dependent stopped-flow kinetic data (for the release of pyridine-2-thione) by using an eight-parameter rate equation [described in the Appendix: Brocklehurst & Brocklehurst (1988) Biochem. J. 256, 556-558] to provide pH-independent rate constants and macroscopic pKa values. The analysis reveals the various ways in which the two enzymes respond very differently to the binding of ligands in the S1-S2 intersubsite regions despite the virtually superimposable crystal structures in these regions of the molecules. 3. Particularly striking differences between the behaviour of papain and that of actinidin are that (a) only papain responds to the presence of a P1-P2 amide bond in the probe such that a rate maximum at pH 6-7 is produced in the pH-k profile in place of the rate minimum, (b) only in the papain reactions does the pKa value of the alkaline limb of the pH-k profile change from 9.5 to approx. 8.2 [the value characteristic of a pH-(kcat./Km) profile] when the probe contains a P1-P2 amide bond, (c) only papain reactivity is affected by two positively co-operative hydronic dissociations with pKI congruent to pKII congruent to 4 and (d) modulation of the reactivity of the common -S(-)-ImH+ catalytic-site ion-pair (Cys-25/His-159 in papain and Cys-25/His-162 in actinidin) by hydronic dissociation with pKa approx. 5 is more marked and occurs more generally in reactions of actinidin than is the case for papain reactions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号