首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   2篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2000年   5篇
  1999年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1940年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
1.
2.
Two species of folate binding protein (FBP), an integral membrane-associated form and a soluble secreted form, have been previously purified from cultured human KB cells. The complete nucleotide sequence of the complementary DNA (cDNA) clone for the coding region of the mature membrane-associated FBP has now been determined, and the deduced amino acid sequence has been computer-analyzed for a prediction of the secondary structure of the protein. The clone has 857 nucleotides of which 678 comprise the coding region for 226 amino acids. The deduced amino sequence contains the identical sequence of the published 18 NH2-terminal amino acids of the purified FBP from KB cells and the published partial amino acid sequence of the human milk FBP except for 1 residue. There was also over 90% homology with the published amino acid sequence of the bovine milk FBP. A total of 16 cysteine residues has been conserved in the three proteins indicating that this amino acid may provide a tertiary structure which is required for its ligand binding function. Northern blot analysis using the cDNA probe identified a single band of 1.28-kilobase pair mRNA in KB cells which was 4.7-fold more intense in folate-depleted cells than in normal cells. These results indicate that the membrane FBP and the soluble FBP in the medium are translation products of the same gene. Computer analysis of the deduced amino acid sequence indicates that there is only one stretch of amino acids of sufficient hydrophobicity and length to span the lipid bilayer of the plasma membrane, but it lacked a predictable helical structure. Those regions of the sequence which did have a predictable helical structure lacked sufficient hydrophobicity required for a membrane anchor. Thus, it is likely that the fatty acids previously reported to be present in the membrane-associated FBP from these cells rather than a peptide sequence provide an important membrane anchoring function.  相似文献   
3.
Differential scanning calorimetry has been used to study several structural transitions of the human erythrocyte membrane. Earlier studies have shown that one of these transitions (the A transition) is due to the thermal unfolding of spectrin on the membrane. In this paper, it is shown that two of the other transitions (B and C) exhibit a high sensitivity to a local anesthetic, benzyl alcohol. Increasing the ionic strength of the suspending medium results in a splitting of the B transition into two independent transitions (B1 and B2). It is found that one of these (B2) is associated with titrating groups, since the midpoint for the transitions shifts by about 20°C, with an apparent pK near 7.5. Extensive bilateral proteolysis by papain causes a drastic decrease in the size of all transitions except the C transition, which remains unaltered. On the other hand, treatment with phospholipase A2 largely affects the C transition, causing its disappearance. Because of the lack of sensitivity to proteolysis and the high sensitivity to phospholipase, it appears that the C transition has a large extent of ‘lipid involvement’. It might result from the melting of a small fraction of phospholipid which exists in a crystalline state under physiological conditions. Alternatively, the C transition could arise from changes in protein-lipid interactions or from lipid-dependent changes in protein-protein interactions, providing one assumes that only protease-resistant portions of membrane proteins are participating.  相似文献   
4.

Background  

The EEG (Electroencephalogram) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer can not directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. This work discusses the effect on the EEG signal due to music and reflexological stimulation.  相似文献   
5.
A 26 residue peptide (Am 2766) with the sequence CKQAGESCDIFSQNCCVG-TCAFICIE-NH(2) has been isolated and purified from the venom of the molluscivorous snail, Conus amadis, collected off the southeastern coast of India. Chemical modification and mass spectrometric studies establish that Am 2766 has three disulfide bridges. C-terminal amidation has been demonstrated by mass measurements on the C-terminal fragments obtained by proteolysis. Sequence alignments establish that Am 2766 belongs to the delta-conotoxin family. Am 2766 inhibits the decay of the sodium current in brain rNav1.2a voltage-gated Na(+) channel, stably expressed in Chinese hamster ovary cells. Unlike delta-conotoxins have previously been isolated from molluscivorous snails, Am 2766 inhibits inactivation of mammalian sodium channels.  相似文献   
6.
Intestinal mucus, a viscous secretion that lines the mucosa, is believed to be a barrier to absorption of many therapeutic compounds and carriers, and is known to play an important physiological role in controlling pathogen invasion. Nevertheless, there is as yet no clear understanding of the barrier properties of mucus, such as the nature of the molecular interactions between drug molecules and mucus components as well as those that govern gel formation. Secretory mucins, large and complex glycoprotein molecules, are the principal determinants of the viscoelastic properties of intestinal mucus. Despite the important role that mucins play in controlling transport and in diseases such as cystic fibrosis, their structures remain poorly characterized. The major intestinal secretory mucin gene, MUC2, has been identified and fully sequenced. The present study was undertaken to determine a detailed structure of the cysteine-rich region within the C-terminal end of human intestinal mucin (MUC2) via homology modeling, and explore possible configurations of a dimer of this cysteine-rich region, which may play an important role in governing mucus gel formation. Based on sequence–structure alignments and three-dimensional modeling, a cystine knot tertiary structure homologous to that of human chorionic gonadotropin (HCG) is predicted at the C-terminus of MUC2. Dimers of this C-terminal cystine knot (CTCK) were modeled using sequence alignment based on HCG and TGF-beta, followed by molecular dynamics and simulated annealing. Results support the formation of a cystine knot dimer with a structure analogous to that of HCG.   相似文献   
7.
While the apoptotic and necrotic cell death pathways have been well studied, there lacks a comprehensive understanding of the molecular events involving autophagic cell death. We examined the potential roles of the apoptosis-linked caspase-3 and the necrosis/apoptosis-linked calpain-1 after autophagy induction under prolonged amino acid (AA) starvation conditions in PC-12 cells. Autophagy induction was observed as early as three hours following amino acid withdrawal. Cell death, measured by lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays occurred within 24 h following starvation and was accompanied by an upregulation in caspase-3 activity but not calpain-1. The cell death that occurred following AA starvation was significantly alleviated by treatment with the autophagy inhibitor 3-methyl adenine but not with the broad spectrum caspase inhibitors. Thus, this study demonstrates that 3-methyladenine-sensitive autophagic cell death due to AA starvation in PC-12 cells is mechanistically and biochemically similar to, yet distinct from, classic caspase dependent apoptosis. Shankar Sadasivan and Anu Waghray have contributed equally to this work.  相似文献   
8.
Sadasivan S  Pond BB  Pani AK  Qu C  Jiao Y  Smeyne RJ 《PloS one》2012,7(3):e33693

Background

Methylphenidate (MPH) is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT) and the norepinephrine transporter (NET), resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a “cognitive enhancer” and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia.

Methodology/Principal Findings

Through the use of stereological counting methods, we observed a significant reduction (∼20%) in dopamine neuron numbers in the substantia nigra pars compacta (SNpc) following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Unbiased gene screening employing Affymetrix GeneChip® HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN) of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigra (SN) were observed with both acute and chronic dosing of 10 mg/kg MPH. We also found an increase in mRNA levels of the pro-inflammatory genes il-6 and tnf-α in the striatum, although these were seen only at an acute dose of 10 mg/kg and not following chronic dosing.

Conclusion

Collectively, our results suggest that chronic MPH usage in mice at doses spanning the therapeutic range in humans, especially at prolonged higher doses, has long-term neurodegenerative consequences.  相似文献   
9.
Autophagy has been implicated in several neurodegenerative diseases and recently its role in acute brain injury has received increased interest. In our study, we investigated the profiles of autophagy-linked proteins (MAP-LC3 (Atg8), beclin-1 (Atg6) and the beclin-1-binding protein, bcl-2, following controlled cortical impact injury in rats—a model for moderate-to-severe traumatic brain injury. We observed significant increases in the levels of the processed form of LC3 (LC3-II) in the ipsilateral cortex 2 h to 2 days after injury when compared to sham. Furthermore, the beclin-1/bcl-2 ratio in the ipsilateral cortex was found to have increased from 1 and 2 days after injury. Since both of these changes are established autophagy-enabling events, and, based on these data, we propose that autophagy, plays a role in the manifestation of cell injury following brain trauma.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号