首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2005年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
2.
The serotonin transporter (SERT) maintains serotonergic neurotransmission via rapid reuptake of serotonin from the synaptic cleft. SERT relies exclusively on the coat protein complex II component SEC24C for endoplasmic reticulum (ER) export. The closely related transporters for noradrenaline and dopamine depend on SEC24D. Here, we show that discrimination between SEC24C and SEC24D is specified by the residue at position +2 downstream from the ER export motif (607RI608 in SERT). Substituting Lys610 with tyrosine, the corresponding residue found in the noradrenaline and dopamine transporters, switched the SEC24 isoform preference: SERT-K610Y relied solely on SEC24D to reach the cell surface. This analysis was extended to other SLC6 (solute carrier 6) transporter family members: siRNA-dependent depletion of SEC24C, but not of SEC24D, reduced surface levels of the glycine transporter-1a, the betaine/GABA transporter and the GABA transporter-4. Experiments with dominant negative versions of SEC24C and SEC24D recapitulated these findings. We also verified that the presence of two ER export motifs (in concatemers of SERT and GABA transporter-1) supported recruitment of both SEC24C and SEC24D. To the best of our knowledge, this is the first report to document a change in SEC24 specificity by mutation of a single residue in the client protein. Our observations allowed for deducing a rule for SLC6 family members: a hydrophobic residue (Tyr or Val) in the +2 position specifies interaction with SEC24D, and a hydrophilic residue (Lys, Asn, or Gln) recruits SEC24C. Variations in SEC24C are linked to neuropsychiatric disorders. The present findings provide a mechanistic explanation. Variations in SEC24C may translate into distinct surface levels of neurotransmitter transporters.  相似文献   
3.
The aim of the study was to investigate the role of glutamate residue 113 in transmembrane domain 2 of the human noradrenaline transporter in determining cell surface expression and functional activity. This residue is absolutely conserved in all members of the Na+- and Cl--dependent transporter family. Mutations to alanine (hE113A), aspartate (hE113D) and glutamine (hE113Q) were achieved by site-directed mutagenesis and the mutants were expressed in transfected COS-7 or HEK-293 cells. Cell surface expression of hE113A and hE113D, but not hE113Q, was markedly reduced compared with wild type, and functional noradrenaline uptake was detected only for the hE113Q mutant. The pharmacological properties of the hE113Q mutant showed very little change compared with wild type, except for a decrease in Vmax values for noradrenaline and dopamine uptake of 2-3-fold. However, the hE113D mutant showed very marked changes in its properties, compared with wild type, with 82-260-fold decreases in the affinities of the substrates, noradrenaline, dopamine and MPP+, and increased Na+ affinity for stimulation of nisoxetine binding. The results of the study show that the size and not the charge of the 113 glutamate residue of the noradrenaline transporter seems to be the most critical factor for maintenance of transporter function and surface expression.  相似文献   
4.
5.
The dopamine transporter (DAT) is a crucial regulator of dopaminergic neurotransmission, controlling the length and brevity of dopaminergic signaling. DAT is also the primary target of psychostimulant drugs such as cocaine and amphetamines. Conversely, methylphenidate and amphetamine are both used clinically in the treatment of attention-deficit hyperactivity disorder and narcolepsy. The action of amphetamines, which induce transport reversal, relies primarily on the ionic composition of the intra- and extracellular milieus. Recent findings suggest that DAT interacting proteins may also play a significant role in the modulation of reverse dopamine transport. The pharmacological inhibition of the serine/threonine kinase αCaMKII attenuates amphetamine-triggered DAT-mediated 1-methyl-4-phenylpyridinium (MPP(+)) efflux. More importantly, αCaMKII has also been shown to bind DAT in vitro and is therefore believed to be an important player within the DAT interactome. Herein, we show that αCaMKII co-immunoprecipitates with DAT in mouse striatal synaptosomes. Mice, which lack αCaMKII or which express a permanently self-inhibited αCaMKII (αCaMKII(T305D)), exhibit significantly reduced amphetamine-triggered DAT-mediated MPP(+) efflux. Additionally, we investigated mice that mimic a neurogenetic disease known as Angelman syndrome. These mice possess reduced αCaMKII activity. Angelman syndrome mice demonstrated an impaired DAT efflux function, which was comparable with that of the αCaMKII mutant mice, indicating that DAT-mediated dopaminergic signaling is affected in Angelman syndrome.  相似文献   
6.
We report the presence, in the mitochondrial DNA (mtDNA) of all of the sexual species of the salamander family Ambystomatidae, of a shared 240- bp intergenic spacer between tRNAThr and tRNAPro. We place the intergenic spacer in context by presenting the sequence of 1,746 bp of mtDNA from Ambystoma tigrinum tigrinum, describe the nucleotide composition of the intergenic spacer in all of the species of Ambystomatidae, and compare it to other coding and noncoding regions of Ambystoma and several other vertebrate mtDNAs. The nucleotide substitution rate of the intergenic spacer is approximately three times faster than the substitution rate of the control region, as shown by comparisons among six Ambystoma macrodactylum sequences and eight members of the Ambystoma tigrinum complex. We also found additional inserts within the intergenic spacers of five species that varied from 87-444 bp in length. The presence of the intergenic spacer in all sexual species of Ambystomatidae suggests that it arose at least 20 MYA and has been a stable component of the ambystomatid mtDNA ever since. As such, it represents one of the few examples of a large and persistent intergenic spacer in the mtDNA of any vertebrate clade.   相似文献   
7.
Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay.  相似文献   
8.
A key step in the cellular differentiation of Dictyostelium is the degradation of glycogen to provide the precursors for synthesis of the structural end products of development. We have found that the enzyme that initiates this degradative pathway, glycogen phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-glucosyltransferase; EC 2.4.1.1), is developmentally regulated and exists as two forms. During the time course of development, a previously undescribed activity, the "b" form, decreases, while that of the "a" form increases. The "b" form is inactive unless 5'AMP is included in the reaction mixture. The two forms differ in their elution from DE52 cellulose, affinity constants, thermal stability, affinity for 5'AMP Sepharose, subunit molecular weight, and peptide maps. In crude extracts, anti-a antiserum stains a 104-kD protein that is associated with phosphorylase "a" activity and appears late in development, while anti-b antiserum stains a 92-kD protein that is associated with phosphorylase "b" activity and is present throughout development. We have also demonstrated in vitro phosphorylation of the "b" form by an endogenous protein kinase and a corresponding loss of 5'AMP dependence. If intact cells were exposed to exogenous cAMP, "b" activity decreased and was replaced by "a" activity, as well as the 104-kD protein band on SDS-PAGE. In order to determine if the two forms of the enzyme are different gene products, we screened lambda gt11 expression libraries with antibodies against the purified "a" and "b" forms. Three clones were found to be overlapping by Southern analysis. A yeast glycogen phosphorylase cDNA clone (gpy) and a human muscle glycogen phosphorylase clone (HM-11) cross-hybridized with the Dictyostelium inserts, and gpy shared a few common restriction fragments with the Dictyostelium clones on genomic blots. Northern analysis of Dictyostelium total RNA showed that the Dictyostelium inserts and gpy recognize an mRNA of 3.2 kb, while on poly A-enriched RNA, the yeast clone detects preferentially a 3.6-kb message.  相似文献   
9.
Human organic cation transporter 2 (hOCT2) is involved in transport of many endogenous and exogenous organic cations, mainly in kidney and brain cells. Because the quaternary structure of transmembrane proteins plays an essential role for their cellular trafficking and function, we investigated whether hOCT2 forms oligomeric complexes, and if so, which part of the transporter is involved in the oligomerization. A yeast 2-hybrid mating-based split-ubiquitin system (mbSUS), fluorescence resonance energy transfer, Western blot analysis, cross-linking experiments, immunofluorescence, and uptake measurements of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium were applied to human embryonic kidney 293 (HEK293) cells transfected with hOCT2 and partly also to freshly isolated human proximal tubules. The role of cysteines for oligomerization and trafficking of the transporter to the plasma membranes was investigated in cysteine mutants of hOCT2. hOCT2 formed oligomers both in the HEK293 expression system and in native human kidneys. The cysteines of the large extracellular loop are important to enable correct folding, oligomeric assembly, and plasma membrane insertion of hOCT2. Mutation of the first and the last cysteines of the loop at positions 51 and 143 abolished oligomer formation. Thus, the cysteines of the extracellular loop are important for correct trafficking of the transporter to the plasma membrane and for its oligomerization.  相似文献   
10.
The transporters for serotonin (SERT), dopamine, and noradrenaline have a conserved hydrophobic core but divergent N and C termini. The C terminus harbors the binding site for the coat protein complex II (COPII) cargo-binding protein SEC24. Here we explored which SEC24 isoform was required for export of SERT from the endoplasmic reticulum (ER). Three lines of evidence argue that SERT can only exit the ER by recruiting SEC24C: (i) Mass spectrometry showed that a peptide corresponding to the C terminus of SERT recruited SEC24C-containing COPII complexes from mouse brain lysates. (ii) Depletion of individual SEC24 isoforms by siRNAs revealed that SERT was trapped in the ER only if SEC24C was down-regulated, in both, cells that expressed SERT endogenously or after transfection. The combination of all siRNAs was not more effective than that directed against SEC24C. A SERT mutant in which the SEC24C-binding motif ((607)RI(608)) was replaced by alanine was insensitive to down-regulation of SEC24C levels. (iii) Overexpression of a SEC24C variant with a mutation in the candidate cargo-binding motif (SEC24C-D796V/D797N) but not of the corresponding mutant SEC24D-D733V/D734N reduced SERT surface levels. In contrast, noradrenaline and dopamine transporters and the more distantly related GABA transporter 1 relied on SEC24D for ER export. These observations demonstrate that closely related transporters are exclusive client cargo proteins for different SEC24 isoforms. The short promoter polymorphism results in reduced SERT cell surface levels and renders affected individuals more susceptible to depression. By inference, variations in the Sec24C gene may also affect SERT cell surface levels and thus be linked to mood disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号