排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
Ascorbate peroxidase from L. Major (LmAPX) is a functional hybrid between cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX). We utilized point mutagenesis to investigate if a conserved proximal tryptophan residue (Trp208) among Class I peroxidase helps in controlling catalysis. The mutant W208F enzyme had no effect on both apparent dissociation constant of the enzyme-cytochrome c complex and K(m) value for cytochrome c indicating that cytochrome c binding affinity to the enzyme did not alter after mutation. Surprisingly, the mutant was 1000 times less active than the wild type in cytochrome c oxidation without affecting the second order rate constant of compound I formation. Our diode array stopped-flow spectral studies showed that the substrate unbound wild type enzyme reacts with H(2)O(2) to form compound I (compound II type spectrum), which was quite different from that of compound I in W208F mutant as well as horseradish peroxidase (HRP). The spectrum of the compound I in wild type LmAPX showed a red shift from 409 nm to 420 nm with equal intensity, which was broadly similar to those of known Trp radical. In case of compound I for W208F mutant, the peak in the Soret region was decreased in heme intensity at 409 nm and was not shifted to 420 nm suggesting this type of spectrum was similar to that of the known porphyrin pi-cation radical. In case of an enzyme-H(2)O(2)-ascorbate system, the kinetic for formation and decay of compound I and II of a mutant enzyme was almost identical to that of a wild type enzyme. Thus, the results of cytochrome c binding, compound I formation rate and activity assay suggested that Trp208 in LmAPX was essential for electron transfer from cytochrome c to heme ferryl but was not indispensable for ascorbate or guaiacol oxidation. 相似文献
2.
Parasitic plants exchange various types of RNAs with their host plants, including mRNA, and small non-coding RNA. Among small non-coding RNAs, miRNA production is known to be induced at the haustorial interface. The induced miRNAs transfer to the host plant and activate secondary siRNA production to silence target genes in the host. In addition to interfacial transfer, long-distance movement of the small RNAs has also been known to mediate signaling and regulate biological processes. In this study, we tested the long-distance movement of trans-species small RNAs in a parasitic-plant complex. Small RNA-Seq was performed using a complex of a stem parasitic plant, Cuscuta campestris, and a host, Arabidopsis thaliana. In the host plant’s parasitized stem, genes involved in the production of secondary siRNA, AtSGS3 and AtRDR6, were upregulated, and 22-nt small RNA was enriched concomitantly, suggesting the activation of secondary siRNA production. Stem-loop RT-PCR and subsequent sequencing experimentally confirmed the mobility of the small RNAs. Trans-species mobile small RNAs were detected in the parasitic interface and also in distant organs. To clarify the mode of long-distance translocation, we examined whether C. campestris-derived small RNA moves long distances in A. thaliana sgs3 and rdr6 mutants or not. Mobility of C. campestris-derived small RNA in sgs3 and rdr6 mutants suggested the occurrence of direct long-distance transport without secondary siRNA production in the recipient plant. 相似文献
3.
Background
It is well known that many malignancies, including pancreatic cancer (PC), possess the ability to evade the immune system by indirectly downregulating the mononuclear cell machinery necessary to launch an effective immune response. This knowledge, in conjunction with the fact that the trancriptome of peripheral blood mononuclear cells has been shown to be altered in the context of many diseases, including renal cell carcinoma, lead us to study if any such alteration in gene expression exists in PC as it may have diagnostic utility.Methods and Findings
PBMC samples from 26 PC patients and 33 matched healthy controls were analyzed by whole genome cDNA microarray. Three hundred eighty-three genes were found to be significantly different between PC and healthy controls, with 65 having at least a 1.5 fold change in expression. Pathway analysis revealed that many of these genes fell into pathways responsible for hematopoietic differentiation, cytokine signaling, and natural killer (NK) cell and CD8+ T-cell cytotoxic response. Unsupervised hierarchical clustering analysis identified an eight-gene predictor set, consisting of SSBP2, Ube2b-rs1, CA5B, F5, TBC1D8, ANXA3, ARG1, and ADAMTS20, that could distinguish PC patients from healthy controls with an accuracy of 79% in a blinded subset of samples from treatment naïve patients, giving a sensitivity of 83% and a specificity of 75%.Conclusions
In summary, we report the first in-depth comparison of global gene expression profiles of PBMCs between PC patients and healthy controls. We have also identified a gene predictor set that can potentially be developed further for use in diagnostic algorithms in PC. Future directions of this research should include analysis of PBMC expression profiles in patients with chronic pancreatitis as well as increasing the number of early-stage patients to assess the utility of PBMCs in the early diagnosis of PC. 相似文献4.
Pancreatic cancer (PC) is a highly lethal malignancy with near 100% mortality. This is in part due to the fact that most patients present with metastatic or locally advanced disease at the time of diagnosis. Significantly, in nearly 95% of PC patients there is neither an associated family history of PC nor of diseases known to be associated with an increased risk of PC. These groups of patients who comprise the bulk of PC cases are termed as "sporadic PC" in contrast to the familial PC cases that comprise only about 5% of all PCs. Given the insidious onset of the malignancy and its extreme resistance to chemo and radiotherapy, an abundance of research in recent years has focused on identifying biomarkers for the early detection of PC, specifically aiming at the sporadic PC cohort. However, while several studies have established that asymptomatic individuals with a positive family history of PC and those with certain heritable syndromes are candidates for PC screening, the role of screening in identifying sporadic PC is still an unsettled question. The present review attempts to assess this critical question by investigating the recent advances made in molecular markers with potential use in the early diagnosis of sporadic PC - the largest cohort of PC cases worldwide. It also outlines a novel yet simple risk factor based stratification system that could be potentially employed by clinicians to identify those individuals who are at an elevated risk for the development of sporadic PC and therefore candidates for screening. 相似文献
5.
Ghosh D Bhattacharya B Mukherjee B Manna B Sinha M Chowdhury J Chowdhury S 《The Journal of nutritional biochemistry》2002,13(11):690-697
Type 2 diabetes mellitus is a complex metabolic disorder with adverse cardiovascular risk. The role of micronutrients has not yet been well clarified in this condition, especially in India.THE OBJECTIVES OF THIS STUDY WERE TO: (1) evaluate chromium status in Indian subjects with type 2 diabetes mellitus, (2) assess the effect of chromium picolinate (200 &mgr;g trivalent chromium twice daily) administration on glycaemic control and lipid profile in these subjects and (3) comment on the possible mechanism of any beneficial effect noted above.Fifty subjects were studied in a double blind, placebo-controlled, crossover fashion, with each treatment arm (chromium/placebo) lasting 12 weeks and 4 weeks' wash-off period in between. 50 healthy age- and sex-matched volunteers served as controls. Serum chromium level appeared to be higher in the general population in our country compared to western countries (36.5-59.5 nmol/L as compared to 2.3-40.3 nmol/L) However, the local diabetics were found to have a lower serum chromium level than the healthy controls (32.3 nmol/L against 44.7 nmol/L; p < 0.0001) and a mean increase of 3.5 nmol/L was noted after 12 weeks of chromium supplementation that was, expectedly, not seen in the placebo phase (p < 0.0001).Significant improvement in glycaemic control was noted in the chromium-treated group (DeltaFasting serum glucose = 0.44 mmol/L, p < 0.001; DeltaPost-prandial serum glucose = 1.97 mmol/L, p < 0.001; Deltaglycated hemoglobin = 0.01; p = 0.04, in comparison to placebo) This was accompanied by a significant greater fall in fasting serum insulin in the chromium-treated group, p < 0.05.The change in lipid parameters (total serum cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol and triglycerides) did not show significant difference between the chromium and placebo groups.Clinically significant hematological, renal or hepatic toxicity were excluded by routine hemogram, serum urea, creatinine, alanine amino transferase (ALT) and alkaline phosphatase estimations.In conclusion, chromium supplementation seems to improve glycaemic control in type 2 diabetic patients, which appears to be due to an increase in insulin action rather than stimulation of insulin secretion. 相似文献
6.
Numerous reports have shown that mitochondrial dysfunctions play a major role in apoptosis of Leishmania parasites, but the endoplasmic reticulum (ER) stress-induced apoptosis in Leishmania remains largely unknown. In this study, we investigate ER stress-induced apoptotic pathways in Leishmania major using tunicamycin as an ER stress inducer. ER stress activates the expression of ER-localized chaperone protein BIP/GRP78 (binding protein/identical to the 78-kDa glucose-regulated protein) with concomitant generation of intracellular reactive oxygen species. Upon exposure to ER stress, the elevation of cytosolic Ca(2+) level is observed due to release of Ca(2+) from internal stores. Increase in cytosolic Ca(2+) causes mitochondrial membrane potential depolarization and ATP loss as ablation of Ca(2+) by blocking voltage-gated cation channels with verapamil preserves mitochondrial membrane potential and cellular ATP content. Furthermore, ER stress-induced reactive oxygen species (ROS)-dependent release of cytochrome c and endonuclease G from mitochondria to cytosol and subsequent translocation of endonuclease G to nucleus are observed. Inhibition of caspase-like proteases with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone or metacaspase inhibitor antipain does not prevent nuclear DNA fragmentation and phosphatidylserine exposure. Conversely, significant protection in tunicamycin-induced DNA degradation and phosphatidylserine exposure was achieved by either pretreatment of antioxidants (N-acetyl-L-cysteine, GSH, and L-cysteine), chemical chaperone (4-phenylbutyric acid), or addition of Ca(2+) chelator (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid-acetoxymethyl ester). Taken together, these data strongly demonstrate that ER stress-induced apoptosis in L. major is dependent on ROS and Ca(2+)-induced mitochondrial toxicity but independent of caspase-like proteases. 相似文献
7.
Subhankar Chakraborty D. Boominathan Ajay A. Desai T. N. C. Vidya 《Conservation Genetics》2014,15(4):897-907
With growing human and, possibly, elephant populations and a drastic increase in anthropogenic activities, human–elephant conflict in Asia has been on the rise. The Alur area in Karnataka state, southern India, is one such case in point, which has witnessed increasing levels of human–elephant conflict over the last two decades. The tiny, moderately protected habitat available for elephants in this human-dominated landscape does not appear to be able to support elephants over the long term. Options to deal with the escalating conflict include translocation of elephants, bringing elephants into captivity, and culling. We carried out a molecular genetic study of elephants in the Alur area to estimate the minimum number of elephants using the area, the sex ratio, genetic relatedness between individuals, and genetic structure with regard to the larger population in the landscape, so that informed management decisions could be made. Fresh dung samples were collected from the field and genotyped using 12 microsatellite loci. We found 29 unique individuals in the population, comprising 17 females and 12 males of different age classes. Relatedness between females suggested independent colonisations by discrete, small groups rather than by one cohesive clan of related females. This obviates the need for a single solution for dealing with all the females in the area in order to maintain social integrity, and has implications in terms how these elephants can be dealt with. We demonstrate how social organization inferred through molecular data from non-invasive sampling can inform management decisions. 相似文献
8.
Kanika Misra Arun B. Banerjee Subhankar Ray Manju Ray 《Molecular and cellular biochemistry》1996,156(2):117-124
Two enzymes, one NADPH-dependent and another NADH-dependent which catalyze the reduction of methylglyoxal to acetol have been isolated and substantially purified from crude extracts of Escherichia coli K12 cells. Substrate specificity and formation of acetol as the reaction product by both the enzymes, reversibility of NADH-dependent enzyme with alcohols as substrates and inhibitor study with NADPH-dependent enzyme indicate that NADPH-dependent and NADH-dependent enzymes are identical with an aldehyde reductase (EC 1.1.1.2) and alcohol dehydrogenase (EC 1.1.1.1) respectively. The Km for methylglyoxal have been determined to be 0.77 mM for NADPH-dependent and 3.8 mM for NADH-dependent enzyme. Stoichiometrically equimolar amount of acetol is formed from methylglyoxal by both NADPH- and NADH-dependent enzymes. In phosphate buffer, both the enzymes are active in the pH range of 5.8–6.6 with no sharp pH optimum. Molecular weight of both the enzymes were found to be 100,000 ± 3,000 by gel filtration on a Sephacryl S-200 column. Both NADPH- and NADH-dependent enzymes are sensitive to sulfhydryl group reagents. 相似文献
9.
Ascorbate peroxidase from Leishmania major (LmAPX) is one of the key enzymes for scavenging of reactive oxygen species generated from the mitochondrial respiratory chain. We have investigated whether mitochondrial LmAPX has any role in oxidative stress-induced apoptosis. The measurement of reduced glutathione (GSH) and protein carbonyl contents in cellular homogenates indicates that overexpression of LmAPX protects Leishmania cells against depletion of GSH and oxidative damage of proteins by H2O2 or camptothecin (CPT) treatment. Confocal microscopy and fluorescence spectroscopy data have revealed that the intracellular elevation of Ca2+ attained by the LmAPX-overexpressing cells was always below that attained in control cells. Flow cytometry assay data and confocal microscopy observation strongly suggest that LmAPX overexpression protects cells from H2O2-induced mitochondrial membrane depolarization as well as ATP decrease. Western blot data suggest that overexpression of LmAPX shields against H2O2- or CPT-induced cytochrome c and endonuclease G release from mitochondria and subsequently their accumulation in the cytoplasm. Caspase activity assay by flow cytometry shows a lower level of caspase-like protease activity in LmAPX-overexpressing cells under apoptotic stimuli. The data on phosphatidylserine exposed on the cell surface and DNA fragmentation results show that overexpression of LmAPX renders the Leishmania cells more resistant to apoptosis provoked by H2O2 or CPT treatment. Taken together, these results indicate that constitutive overexpression of LmAPX in the mitochondria of L. major prevents cells from the deleterious effects of oxidative stress, that is, mitochondrial dysfunction and cellular death.In multicellular organisms, mitochondria are the major physiological source of reactive oxygen species (ROS) within cells and also are important checkpoints for the control of programmed cell death (27). There are increasing numbers of reports that describe apoptosis- or programmed cell death-like processes in unicellular organisms also, such as trypanosomatids (4, 60), bacteria (20, 25), yeasts (34), and Plasmodium (3). Among the kinetoplastid parasites, Trypanosoma and Leishmania are the most carefully studied genera where apoptotic features are well established (49). Several reports have shown that mitochondrial dysfunction or an imbalance of antioxidant homeostasis causes an increase in mitochondrion-generated ROS, which include H2O2, superoxide radical anions, singlet oxygen, and hydroxyl radicals. These species have all been implicated in apoptosis (16, 26, 28, 41). Increasing evidence has been presented to support that ROS homeostasis regulates two major types of important physiological processes and exerts diverse functions within cells. One type of function includes damage or oxidation of cellular macromolecules (DNA, proteins, and lipids), which can lead to necrotic cell death or protein modification (7). The second type of function includes the activation of cellular signaling cascades that regulate proliferation, detoxification, DNA repair, or apoptosis (11). The detoxification of toxic mitochondrial ROS in cells occurs through a variety of cellular antioxidant enzymes, such as superoxide dismutase, which detoxifies cells from superoxide released into the mitochondrial matrix, and several other antioxidant proteins, such as catalase, glutathione (GSH) peroxidase, and peroxiredoxins, which are known to catalyze further degradation of H2O2 (44). During its life cycle, the Leishmania sp. encounters a pool of ROS that is generated either by its own physiological processes or as a result of host immune reaction and drug metabolism. However, unlike most eukaryotes, Leishmania lacks catalase- and selenium-containing GSH peroxidases, enzymes that play a front-line role in detoxifying ROS. Hence, the mechanism by which it resists the toxic effects of H2O2 remains poorly understood.Recently, we cloned, expressed and characterized the unusual heme-containing ascorbate peroxidase from Leishmania major (LmAPX) and observed that the expression of LmAPX is increased when Leishmania cells are treated with exogenous H2O2 (1, 18). This enzyme is a functional hybrid between cytochrome c peroxidase and APX, owing to its ability to use both ascorbate and cytochrome c as reducing electron donors (58). Colocalization studies by confocal microscopy, submitochondrial fractionation analysis of the isolated mitochondria, and subsequent Western blot analysis with anti-LmAPX antibody have confirmed that the mature enzyme is present in intermembrane space side of the inner membrane. It has also been shown that overexpression of LmAPX causes a decrease in the mitochondrial ROS burden, an increase in tolerance to H2O2, and protection against cardiolipin oxidation under oxidative stress (18). Although previous studies have shown that Leishmania species use superoxide dismutase (23), peroxiredoxins (8), intracellular thiols (14), lipophosphoglycan (13), trypanothione (5), HSP 70 (a heat shock protein) (36), tryparedoxin peroxidase (29), and APX (18) for detoxification of ROS, it is still unclear how the antioxidants protect against oxidative stress-induced apoptotic events in the unicellular organism Leishmania.Since the LmAPX protein is localized in the mitochondria, we hypothesized that it would be a key protein for the maintenance of mitochondrial functions due to its antioxidant properties via its ROS-scavenging function (18). To test this hypothesis, we overexpressed LmAPX in Leishmania major cells and investigated whether overexpression of LmAPX can confer resistance to oxidant-mediated mitochondrial damage as well as oxidative stress-induced cell death. In this study, we provide evidence that the overexpression of LmAPX in Leishmania cells can indeed protect against camptothecin (CPT) or H2O2-mediated mitochondrial damage as measured by various parameters, including disruption of mitochondrial membrane potential (Δψm), decrease of ATP production, and cytochrome c and endonuclease G release from mitochondria. Cells overexpressing LmAPX were also protected against oxidative stress-induced protein carbonylation, DNA fragmentation, and apoptosis. To the best of our knowledge, this is the first report of a mitochondrial hemeperoxidase that controls the ROS-induced mitochondrial death pathway. 相似文献
10.
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H(2)O(2) with concurrent evolution of O(2). This pseudocatalatic degradation of H(2)O(2) to O(2) is solely dependent on ascorbate and is blocked by a spin trap, alpha-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H(2)O with subsequent regeneration of ascorbate by the reduction of MDA with H(2)O(2) evolving O(2) through the intermediate formation of O(2)(-). Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN(-) in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN(-). Further kinetic studies indicate that SCN(-) itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN(-) blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H(2)O(2) to O(2). Binding studies by optical difference spectroscopy indicate that SCN(-) binds LmAPX (Kd = 100 +/- 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN(-) acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity. 相似文献