全文获取类型
收费全文 | 98篇 |
免费 | 0篇 |
专业分类
98篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2018年 | 6篇 |
2017年 | 1篇 |
2016年 | 6篇 |
2015年 | 1篇 |
2014年 | 4篇 |
2013年 | 9篇 |
2012年 | 7篇 |
2011年 | 3篇 |
2010年 | 2篇 |
2009年 | 3篇 |
2008年 | 5篇 |
2007年 | 1篇 |
2006年 | 3篇 |
2005年 | 2篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2002年 | 5篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1997年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1983年 | 1篇 |
1975年 | 2篇 |
1974年 | 4篇 |
1973年 | 2篇 |
1972年 | 2篇 |
1969年 | 1篇 |
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
Impact of phosphate solubilizing bacteria along with soil phosphatase activity on phosphorous cycle was found to be quiet interesting in the Sundarban mangrove ecosystem. Soil phosphatase activity showed a decreasing pattern with increase in depth [soil phosphatase activity (μg pnp produced g?1 dry wt of soil) = 906.85 – 5.6316 Depth (cm)] from the deep forest region of the Sundarban forest ecosystem. Soil salinity showed a very little effect on soil phosphatase activity whereas soil temperature and pH was found to show significant impact on the soil phosphatase activity. This ensured that the microbes associated with phosphate mineralization present in the Sundarban forest ecosystem are more tolerant to fluctuation in salinity than that of temperature and pH. A direct correlation was perceptible between the number of phosphate solubilizing bacteria and phosphatase activity in the soil during the study period from 2007 to 2012. Soil phosphate concentration was found to be directly governed by the soil phosphatase activity [The regression equation is: avg PO4?3-P (μg g?1 dry wt of soil) = 0.0311 + 0.000606 soil phosphatase activity (μg pnp produced g?1 dry wt of soil); R2 = 63.2%, p < 0.001, n = 62]. 相似文献
2.
Andreas D. Kistler Geetika Singh Mehmet M. Altintas Hao Yu Isabel C. Fernandez Changkyu Gu Cory Wilson Sandeep Kumar Srivastava Alexander Dietrich Katherina Walz Dontscho Kerjaschki Phillip Ruiz Stuart Dryer Sanja Sever Amit K. Dinda Christian Faul Jochen Reiser 《The Journal of biological chemistry》2013,288(51):36598-36609
Gain-of-function mutations in the calcium channel TRPC6 lead to autosomal dominant focal segmental glomerulosclerosis and podocyte expression of TRPC6 is increased in some acquired human glomerular diseases, particularly in membranous nephropathy. These observations led to the hypothesis that TRPC6 overactivation is deleterious to podocytes through pathological calcium signaling, both in genetic and acquired diseases. Here, we show that the effects of TRPC6 on podocyte function are context-dependent. Overexpression of TRPC6 alone did not directly affect podocyte morphology and cytoskeletal structure. Unexpectedly, however, overexpression of TRPC6 protected podocytes from complement-mediated injury, whereas genetic or pharmacological TRPC6 inactivation increased podocyte susceptibility to complement. Mechanistically, this effect was mediated by Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. Podocyte-specific TRPC6 transgenic mice showed stronger CaMKII activation, reduced podocyte foot process effacement and reduced levels of proteinuria during nephrotoxic serum nephritis, whereas TRPC6 null mice exhibited reduced CaMKII activation and higher levels of proteinuria compared with wild type littermates. Human membranous nephropathy biopsy samples showed podocyte staining for active CaMKII, which correlated with the degree of TRPC6 expression. Together, these data suggest a dual and context dependent role of TRPC6 in podocytes where acute activation protects from complement-mediated damage, but chronic overactivation leads to focal segmental glomerulosclerosis. 相似文献
3.
Besides vobtusine and vobtusine-lactone, deoxyvobtusine was isolated from the leaves of Voacanga grandifolia (Miq. Rolfe. Spectral and chemical evi 相似文献
4.
W Dou S Mukherjee H Li M Venkatesh H Wang S Kortagere A Peleg SS Chilimuri ZT Wang Y Feng ER Fearon S Mani 《PloS one》2012,7(7):e36075
Pregnane X Receptor (PXR), a master regulator of drug metabolism and inflammation, is abundantly expressed in the gastrointestinal tract. Baicalein and its O-glucuronide baicalin are potent anti-inflammatory and anti-cancer herbal flavonoids that undergo a complex cycle of interconversion in the liver and gut. We sought to investigate the role these flavonoids play in inhibiting gut inflammation by an axis involving PXR and other potential factors. The consequences of PXR regulation and activation by the herbal flavonoids, baicalein and baicalin were evaluated in vitro in human colon carcinoma cells and in vivo using wild-type, Pxr-null, and humanized (hPXR) PXR mice. Baicalein, but not its glucuronidated metabolite baicalin, activates PXR in a Cdx2-dependent manner in vitro, in human colon carcinoma LS174T cells, and in the murine colon in vivo. While both flavonoids abrogate dextran sodium sulfate (DSS)-mediated colon inflammation in vivo, oral delivery of a potent bacterial β-glucuronidase inhibitor eliminates baicalin's effect on gastrointestinal inflammation by preventing the microbial conversion of baicalin to baicalien. Finally, reduction of gastrointestinal inflammation requires the binding of Cdx2 to a specific proximal site on the PXR promoter. Pharmacological targeting of intestinal PXR using natural metabolically labile ligands could serve as effective and potent therapeutics for gut inflammation that avert systemic drug interactions. 相似文献
5.
6.
Subhajit Dinda Sujoy RoyChowdhury K.M. Abdul Malik Ramgopal Bhattacharyya 《Inorganica chimica acta》2009,362(7):2108-2116
Thiocyanate ions reduce perrhenate in aqueous acidic solution, and on addition of a suitable countercation (PPh4Cl) afford (PPh4)2[Re(NCS)6] (1) and (PPh4)2[ReO(NCS)5] (2), which have been confirmed by X-ray crystallography. The kinetics of the above reaction has been studied. Both the complexes exhibit efficient and highly selective catalytic epoxidation ability in the presence of NaHCO3 as a co-catalyst and competent catalytic properties in the selective oxidation of alcohols to the corresponding aldehydes or ketones in the presence of pyrazole as an additive and sulfides to sulfoxides and sulfones. H2O2 was used as the terminal oxidant in all the above-mentioned oxidation reactions. 相似文献
7.
The structure of echitoserpidine, a new alkaloid of the fruits of Alstonia venenata has been established as (1) on the basis of spectral and chemical evidence. 相似文献
8.
Das BB Sen N Roy A Dasgupta SB Ganguly A Mohanta BC Dinda B Majumder HK 《Nucleic acids research》2006,34(4):1121-1132
Emergence of the bi-subunit topoisomerase I in the kinetoplastid family (Trypanosoma and Leishmania) has brought a new twist in topoisomerase research related to evolution, functional conservation and preferential sensitivities to the specific inhibitors of type IB topoisomerase family. In the present study, we describe that naturally occurring flavones baicalein, luteolin and quercetin are potent inhibitors of the recombinant Leishmania donovani topoisomerase I. These compounds bind to the free enzyme and also intercalate into the DNA at a very high concentration (300 µM) without binding to the minor grove. Here, we show that inhibition of topoisomerase I by these flavones is due to stabilization of topoisomerase I–DNA cleavage complexes, which subsequently inhibit the religation step. Their ability to stabilize the covalent topoisomerase I–DNA complex in vitro and in living cells is similar to that of the known topoisomerase I inhibitor camptothecin (CPT). However, in contrast to CPT, baicalein and luteolin failed to inhibit the religation step when the drugs were added to pre-formed enzyme substrate binary complex. This differential mechanism to induce the stabilization of cleavable complex with topoisomerase I and DNA by these selected flavones and CPT led us to investigate the effect of baicalein and luteolin on CPT-resistant mutant enzyme LdTOP1Δ39LS lacking 1–39 amino acids of the large subunit [B. B. Das, N. Sen, S. B. Dasgupta, A. Ganguly and H. K. Majumder (2005) J. Biol. Chem. 280, 16335–16344]. Baicalein and luteolin stabilize duplex oligonucleotide cleavage with LdTOP1Δ39LS. This observation was further supported by the stabilization of in vivo cleavable complex by baicalein and luteolin with highly CPT-resistant L.donovani strain. Taken together, our data suggest that the interacting amino acid residues of topoisomerase I may be partially overlapping or different for flavones and CPT. This study illuminates new properties of the flavones and provide additional insights into the ligand binding properties of L.donovani topoisomerase I. 相似文献
9.
10.
Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections