首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  2017年   1篇
  2015年   1篇
  2003年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Stereocilia side links are directly involved in the maintenance of stereociliary bundle integrity in hair cells. The structure of the stereocilia side links and morphology of the auditory hair bundle in relation to noise exposure in the chinchilla was investigated by transmission electron microscopy. The outer hair cell (OHC) stereocilia side link was suggested to consist of extracellular, juxta-membrane and thin filamentous regions. Two beaded filaments were folded at their distal ends and fastened in one globule in the center between stereocilia. An intracellular, submembraneous layer appeared to form a bridge between the actin core and the extracellular, juxta-membrane region of the side link. In normal physiological conditions, most OHC stereocilia had a regular distribution of side links, forming a ‘zipper-like’ lattice between stereocilium shafts. Side links of the inner hair cell (IHC) stereocilia had a similar filamentous appearance, but were observed less commonly and had decreased structural organization compared to those of the OHC stereocilia. Ultrastructural analysis of OHC and IHC stereocilia showed that a large number of the side links could survive acoustic stimulation of 114 dB SPL for 2 hrs or 123 dB SPL for 15 min, that resulted in temporarily elevated hearing thresholds in all animals. Disarray, separation, close attachment and fusion of stereocilia were more frequently observed for IHC stereocilia and OHC stereocilia that were poorly connected or that lacked side links. Most disarrayed OHC and IHC stereocilia recovered to a normal erect state with restored orientation of the side links after 14–28 days, which correlated with near-complete recovery of auditory sensitivity. However, direct attachment of plasma membranes, ruptured links, fusion and blebs were seen on some stereocilia even after 28 days and appear to be permanent.  相似文献   
2.
Small regulatory RNAs have major roles in many regulatory circuits in Escherichia coli and other bacteria, including the transition from planktonic to biofilm growth. We tested Hfq‐dependent sRNAs in E. coli for their ability, when overproduced, to inhibit or stimulate biofilm formation, in two different growth media. We identify two mutually exclusive pathways for biofilm formation. In LB, PgaA, encoding an adhesion export protein, played a critical role; biofilm was independent of the general stress factor RpoS or CsgD, regulator of curli and other biofilm genes. The PgaA‐dependent pathway was stimulated upon overproduction of DsrA, via negative regulation of H‐NS, or of GadY, likely by titration of CsrA. In yeast extract casamino acids (YESCA) media, biofilm was dependent on RpoS and CsgD, but independent of PgaA; RpoS appears to indirectly negatively regulate the PgaA‐dependent pathway in YESCA medium. Deletions of most sRNAs had very little effect on biofilm, although deletion of hfq, encoding an RNA chaperone, was defective in both LB and YESCA. Deletion of ArcZ, a small RNA activator of RpoS, decreased biofilm in YESCA; only a portion of this defect could be bypassed by overproduction of RpoS. Overall, sRNAs highlight different pathways to biofilm formation.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号