首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   5篇
  2011年   1篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1986年   1篇
  1982年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Osmotically stressed Escherichia coli cells synthesize the osmoprotectant glycine betaine by oxidation of choline through glycine betaine aldehyde (choline----glycine betaine aldehyde----glycine betaine; B. Landfald and A.R. Str?m, J. Bacteriol. 165:849-855, 1986. Mutants blocked at the level of choline dehydrogenase were isolated by selection of strains which did not grow at elevated osmotic strength in the presence of choline but grew when supplemented with glycine betaine. A gene governing the choline dehydrogenase activity was named betA. Mapping by P1 transduction, F' complementation, and deletion mutagenesis showed the betA gene to be located at 7.5 min in the argF-codAB region of the chromosome. Mutants carrying deletions of this region also lacked glycine betaine aldehyde dehydrogenase activity and high-affinity uptake activity for choline; these deletions did not influence the activities of glycine betaine uptake or low-affinity choline uptake, both of which were osmotically regulated.  相似文献   
2.
Benthic marine invertebrates collected from sub-Arctic regions of northern Norway, were found to be a promising source of novel bioactive compounds against human and fish pathogenic bacteria and fungi. Lyophilized material from seven species of ascidians, six sponges and one soft alcyonid coral were extracted with 60% acidified acetonitrile (ACN). After separation into an ACN-rich phase (ACN-extract) and an aqueous phase, and subsequent solid-phase extraction of the aqueous phase, fractions differing in polarity were obtained and screened for antibacterial and antifungal activities, along with the more lipophilic ACN-extracts. Antimicrobial activity was determined against two Gram-negative, two Gram-positive bacteria, and two strains of fungi. Notably, all the invertebrate species in the study showed activity against all four strains of bacteria and the two strains of fungi. In general, the aqueous fractions displayed highest antimicrobial activity, and the most potent extracts were obtained from the colonial ascidian Synoicum pulmonaria which displayed activity against bacteria and fungi at a concentration of 0.02 mg/ml; the lowest concentration tested.  相似文献   
3.
4.
A search for antibacterial activity in different body parts of the green sea urchin Strongylocentrotus droebachiensis, the common starfish Asterias rubens, and the sea cucumber Cucumaria frondosa was conducted. Antibacterial activity was detected in extracts from several tissues in all species tested, but mainly in the coelomocyte and body wall extracts. Relatively high antibacterial activity could also be detected in gastrointestinal organs and eggs from A. rubens and in eggs from C. frondosa. Differences between active extracts regarding hydrophobicity and sensitivity to heat and proteinase K treatment indicated that several different compounds were responsible for the antibacterial activities detected. Lysozyme-like activity could be detected in several tissues from A. rubens. Haemolytic activity could be detected in all species tested, especially in the body wall extracts. Results from the current study suggest that marine echinoderms are a potential source for the discovery of novel antibiotics.  相似文献   
5.
Antibacterial activity in four marine crustacean decapods   总被引:12,自引:0,他引:12  
A search for antibacterial activity in different body-parts of Pandalus borealis (northern shrimp), Pagurus bernhardus (hermit crab), Hyas araneus (spider crab) and Paralithodes camtschatica (king crab) was conducted. Dried samples were extracted with 60% (v/v) acetonitrile, containing 0.1% (v/v) trifluoroacetic acid, and further extracted and concentrated on C18 cartridges. Eluates from the solid phase extraction were tested for antibacterial, lysozyme and haemolytic activity. Antibacterial activity against Escherichia coli, Vibrio anguillarum, Corynebacterium glutamicum and Staphylococcus aureus was detected in extracts from several tissues in all species tested, but mainly in the haemolymph and haemocyte extracts. V. anguillarum and C. glutamicum were generally the most sensitive micro-organisms. In P. borealis and P. bernhardus most of the active fractions were not affected by proteinase K treatment, while in H. araneus and P. camtschatica most fractions were sensitive to proteinase K treatment, indicating antibacterial factors of proteinaceous nature. In P. bernhardus the active fractions were generally heat labile, whereas in H. araneus the activities were resistant to heat. Differences between active extracts regarding hydrophobicity and sensitivity for heat and proteinase K treatment indicate that several compounds are responsible for the antibacterial activities detected. Lysozyme-like activity could be detected in some fractions and haemolytic activity against human red blood cells could be detected in haemolymph/haemocyte and exoskeleton extracts from all species tested.  相似文献   
6.
7.
Cells of Proteus sp. strains NTHC153 grown anaerobically with glucose and trimethylamine oxide (TMAO) were converted to spheroplasts by the penicillin method. The spheroplasts were lysed by osmotic shock, and the membrane vesicles were purified by sucrose gradient centrifugation. Vesicles energized electron transfer from formate to TMAO displayed active anaerobic transport of serine. An anaerobic cell-free extract of Proteus sp. disrupted in a French pressure cell reduced TMAO with formate and NADH with the concomitant formation of organic phosphate. The net P/2e- ratios determined were 0.1 and 0.3, respectively. The NADH- and TMAO-dependent phosphorylation was sensitive to uncouplers of oxidative phosphorylation (protonophores), and the formate- and TMAO-dependent serine transport was sensitive to ionophores and protonophores. We conclude that TMAO reduction in Proteus sp. fulfills the essential features of anaerobic respiration.  相似文献   
8.
A search for antibacterial activity in different organs/tissues of the horse mussel, Modiolus modiolus, was conducted. Dried samples were extracted with 60% (v/v) acetonitrile, containing 0.1% (v/v) trifluoroacetic acid. Due to high salt content, two liquid phases were obtained; an acetonitrile-rich phase (ACN extract) and an aqueous phase. The aqueous phase was further subjected to solid phase extraction (SPE). Eluates from SPE and ACN extracts were tested for antibacterial, lysozyme, and toxic activity. Antibacterial activity was demonstrated in extracts from several tissues, including plasma, haemocytes, labial palps, byssus, mantle, and gills. Some of the extracts were sensitive to proteinase K treatment, indicating antibacterial peptides and/or proteins. Lysozyme-like activity and toxic activity against Artemia salina nauplii was detected in fractions from the gills, mantle, muscle, and haemocytes. Results from this study indicate that M. modiolus is a promising source for identifying novel drug lead compounds.  相似文献   
9.
The emergence of pathogenic bacteria resistance to conventional antibiotics calls for an increased focus on the purification and characterization of antimicrobials with new mechanisms of actions. Antimicrobial peptides are promising candidates, because their initial interaction with microbes is through binding to lipids. The interference with such a fundamental cell structure is assumed to hamper resistance development. In the present review we discuss antimicrobial peptides isolated from marine invertebrates, emphasizing the isolation and activity of these natural antibiotics. The marine environment is relatively poorly explored in terms of potential pharmaceuticals, and it contains a tremendous species diversity which evolved in close proximity to microorganisms. As invertebrates rely purely on innate immunity, including antimicrobial peptides, to combat infectious agents, it is believed that immune effectors from these animals are efficient and rapid inhibitors of microbial growth.  相似文献   
10.
It has been shown previously that Escherichia coli accumulates endogenously synthesized trehalose under osmotic stress. We report here that E. coli contained an osmotically regulated trehalose-phosphate synthase which utilized UDP-glucose and glucose 6-phosphate as substrates. In the wild type, the synthase was induced by growth in glucose-mineral medium of elevated osmotic strength and the synthase itself was strongly stimulated by K+ and other monovalent cations. A laboratory strain which expressed the synthase at a high constitutive level was found. GalU mutants, defective in synthesis of UDP-glucose, did not accumulate trehalose. Two genes governing the synthase were identified and named otsA and otsB (osmoregulatory trehalose synthesis). They mapped near 42 min in the flbB-uvrC region. Mutants with an otsA-lacZ or otsB-lacZ operon fusion displayed osmotically inducible beta-galactosidase activity; i.e., the activity was increased fivefold by growth in medium of elevated osmotic strength. Mutants unable to synthesize trehalose (galU, otsA, and otsB) were osmotically sensitive in glucose-mineral medium. But an osmotically tolerant phenotype was restored in the presence of glycine betaine, which also partially repressed the synthesis of synthase in the wild type and of beta-galactosidase in ots-lacZ fusion mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号