首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2001年   1篇
  1998年   1篇
  1989年   1篇
  1978年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
Protein–protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.  相似文献   
2.
Probiotics and Antimicrobial Proteins - The study aims at elucidating the effect of bacilli probiotic preparations on the physiology of laying hens and roosters. Probiotic formulations were...  相似文献   
3.
Microtubules are subcellular nanotubes composed of α- and β-tubulin that arise from microtubule nucleation sites and are mainly composed of γ-tubulin complexes. Cell wall encased plant cells have evolved four distinct microtubule arrays that regulate cell division and expansion. Microtubule-associated proteins, the so called MAPs, construct, destruct and reorganize microtubule arrays thus regulating their spatiotemporal transitions during the cell cycle. By physically binding to microtubules and/or modulating their functions, MAPs control microtubule dynamic instability and/or interfilament cross talk. We survey the recent analyses of Arabidopsis MAPs such as MAP65, MOR1, CLASP, katanin, TON1, FASS, TRM, TAN1 and kinesins in terms of their effects on microtubule array organizations and plant development.  相似文献   
4.
The purpose of this study was to analyze and compare genes encoding superantigens (SAgs) in Staphylococcus xylosus and Staphylococcus aureus isolates collected simultaneously from milk of the same cows with clinical mastitis. Genes encoding staphylococcal enterotoxins and enterotoxin-like proteins (sea-selu), toxic shock syndrome toxin 1 (tst-1) and exfoliative toxins (eta and etd) were investigated. It was found that among 30 isolates of S. xylosus, 16 (53.3%) harbored from 1 to 10 SAg genes. In total, in 16 SAg positive S. xylosus, 11 different enterotoxin genes were detected: sec, sed, seg, seh, sei, selm, seln, selo, selp, ser, selu and one etd gene encoding exfoliative toxin D. The most prevalent genes were ser, selu, and selo. Among all the positive isolates of S. xylosus, a total of 14 different SAg gene combinations were detected. One combination was repeated in 3 isolates, whereas the rest were detected only once. However, in the case of S. aureus all the 30 isolates harbored the same combination of SAg genes: seg, sei, selm, seln, selo and on the basis of PFGE analysis all belonged to the same clonal type. Also noteworthy was the observation that SAg genes detected in S. aureus have also been found in S. xylosus. The findings of this study further extend previous observations that SAg genes are present not only in S. aureus but also in coagulase-negative staphylococci, including S. xylosus. Therefore, taking into account that the SAg genes are encoded on mobile genetic elements it is possible that these genes can be transferred between different species of coexisting staphylococci.  相似文献   
5.
Strigolactones (SLs) are a family of terpenoid allelochemicals that were recognized as plant hormones only a decade ago. They influence a myriad of both above‐ and below‐ground developmental processes, and are an important survival strategy for plants in nutrient‐deprived soils. A rapidly emerging approach to gain knowledge on hormone signaling is the use of traceable analogs. A unique class of labeled SL analogs was constructed, in which the original tricyclic lactone moiety of natural SLs is replaced by a fluorescent cyanoisoindole ring system. Biological evaluation as parasitic seed germination stimulant and hypocotyl elongation repressor proved the potency of the cyanoisoindole strigolactone analogs (CISAs) to be comparable to the commonly accepted standard GR24. Additionally, via a SMXL6 protein degradation assay, we provided molecular evidence that the compounds elicit SL‐like responses through the natural signaling cascade. All CISAs were shown to exhibit fluorescent properties, and the high quantum yield and Stokes shift of the pyrroloindole derivative CISA‐7 also enabled in vivo visualization in plants. In contrast to the previously reported fluorescent analogs, CISA‐7 displays a large similarity in shape and structure with natural SLs, which renders the analog a promising tracer to investigate the spatiotemporal distribution of SLs in plants and fungi.  相似文献   
6.
The plant hormones strigolactones are synthesized from carotenoids and signal via the α/β hydrolase DWARF 14 (D14) and the F‐box protein MORE AXILLARY GROWTH 2 (MAX2). Karrikins, molecules produced upon fire, share MAX2 for signalling, but depend on the D14 paralog KARRIKIN INSENSITIVE 2 (KAI2) for perception with strong evidence that the MAX2–KAI2 protein complex might also recognize so far unknown plant‐made karrikin‐like molecules. Thus, the phenotypes of the max2 mutants are the complex consequence of a loss of both D14‐dependent and KAI2‐dependent signalling, hence, the reason why some biological roles, attributed to strigolactones based on max2 phenotypes, could never be observed in d14 or in the strigolactone‐deficient max3 and max4 mutants. Moreover, the broadly used synthetic strigolactone analog rac‐GR24 has been shown to mimic strigolactone as well as karrikin(‐like) signals, providing an extra level of complexity in the distinction of the unique and common roles of both molecules in plant biology. Here, a critical overview is provided of the diverse biological processes regulated by strigolactones and/or karrikins. These two growth regulators are considered beyond their boundaries, and the importance of the yet unknown karrikin‐like molecules is discussed as well.  相似文献   
7.
This study evaluated the superantigen gene profiles, genetic relatedness and biological activity of exosecretions of 50 Staphylococcus aureus isolates obtained from milk of cows with clinical mastitis. Genomic relatedness of S. aureus was determined by pulsed field gel electrophoresis analysis of macro‐restricted chromosomes. The presence of genes encoding superantigens was confirmed by multiplex PCR. To study the biological activity of S. aureus exosecretions, the supernatants from bacterial liquid cultures were classified into three groups: those with leukotoxin‐like properties, those with superantigen‐like properties and those with no particular activity on leukocytes cultured in vitro. It was shown that all analyzed bacterial isolates belonged to the same clonal type and harbored the same combination of superantigen genes, namely sed, selj and ser. However, 22% of all isolates produced factors with superantigen‐like and 48% of them with leukotoxin‐like activities. Finally, although there were no detectable genetic differences between the analyzed bacterial isolates, the virulence factors secreted by them differed considerably.  相似文献   
8.
This study presents results of research on the influence of rotating magnetic field (RMF) of the induction of 30?mT and the frequency of 50?Hz on the growth dynamics and cell metabolic activity of E. coli and S. aureus, depending on the exposure time. The studies showed that the RMF caused an increase in the growth and cell metabolic activity of all the analyzed bacterial strains, especially in the time interval t?=?30 to 150?min. However, it was also found that the optical density and cell metabolic activity after exposition to RMF were significantly higher in S. aureus cultures. In turn, the study of growth dynamics, revealed a rapid and a significant decrease in these values from t?=?90?min) in the case of E. coli samples. The obtained results prove that RMF (B?=?30?mT, f?=?50?Hz) has a stimulatory effect on the growth and metabolic activity of E. coli and S. aureus. Furthermore, taking into account the time of exposure, stronger influence of RMF on the viability was observed in S. aureus cultures, which may indicate that this effect depends on the shape of the exposed cells.  相似文献   
9.
The authors studied the effect of the influenza virus A (PR8/34) and of its structural components on the immunological reactivity of mice. The enzyme of the external coat of the influenza virus--neuraminidase--possessed an immunodepressive action. Administration of neuraminidase led to the elimination of sialic acids from the surface of lymphocytes and to the reduction of their electrophoretic mobility. The mechanism of the immunodepressive action of neuraminidase is discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号