首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2010年   1篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 593 毫秒
1
1.
Passive co-treatment of municipal wastewater and synthetic acid mine drainage in a laboratory-scale, four-stage continuous flow reactor system was examined for changes in fecal indicator bacteria (FIB) counts. Raw municipal wastewater (MWW) from the City of Norman, Oklahoma was mixed at a 2:1 ratio with high-strength synthetic acid mine drainage and introduced to the system. The MWW contained varying concentrations of total coliforms (TC), fecal coliforms (FC), Escherichia coli, and fecal streptococci (FS). Initial concentrations ranged from 6 to 13, 0.6 to 6, 3 to 5, and 0.1 to 0.7 million cfu/100 mL, for TC, FC, E. coli, and FS, respectively. During the 6.6-day system residence time, a 100% reduction of all FIB was observed. However, FIB exhibited evidence of sub-lethal injury with slower colony formation rates on standard growth media after 81 h of retention. Extending standard incubation periods resulted in higher concentrations of all FIB in each treatment stage, except the final stage where only E. coli and TC counts increased. Although this co-treatment regime reduced FIB concentrations more effectively than conventional active or passive MWW treatment systems, further work can be done to optimize the efficiency of treating these wastes simultaneously.  相似文献   
2.
The objective of this study was to quantify the effect of fungal biomass concentration on the rheology of non-Newtonian fermentation systems. Batch fermentations of Penicillium chrysogenum were carried out with glucose as the sole carbon source. The flow behavior of the system was characterized at various fermentation times and was adequately described by the power-law model. The apparent viscosity of the fermentation broth was significantly affected by biomass concentrations in the fermenter. Fermentation broths containing 17.71 g/l biomass as dry weight were characterized by an apparent viscosity of 0.25 Pa s at a shear rate of 50 s−1. Microbial concentration also affected the power-law flow-behavior index and the consistency index. The value of the consistency index ranged from 0.002 Pa s n at a biomass concentration of 0.1 g/l to 6.14 Pa s n at a biomass concentration of 17.71 g/l. The flow-behavior index decreased from an initial value of 1 to a final value of 0.17. Simple empirical correlations have been proposed to quantify the dependence of the power-law parameters on fungal biomass concentration. Experimental data obtained in this study were accurately described by these correlations. The general applicability of these relationships was tested, using previously published rheological data on Aspergillus awamori and Aspergillus niger fermentation broths, and good agreement was seen between experimental data and the predictions from the empirical correlations. Received: 24 March 1998 / Received revision: 10 September 1998 / Accepted: 16 October 1998  相似文献   
3.
Impact of surface thermodynamics on bacterial transport   总被引:1,自引:0,他引:1  
Microbial surface thermodynamics correlated with bacterial transport in saturated porous media. The surface thermodynamics was characterized by contact-angle measurement and the wicking method, which was related to surface free energies of Lifshitz–van der Waals interaction, Lewis acid–base interaction, and electrostatic interaction between the bacteria and the medium matrix. Transport of three different strains of bacteria present at three physiological states was measured in columns of silica gel and sand from the Canadian River Alluvium (Norman, OK, USA). Microorganisms in stationary state had the highest deposit on solid matrix, compared with logarithmic and decay states. The deposition correlated with the total surface free energy (Δ G132TOT ) and the differences in Δ G132TOT were mainly controlled by the Lewis acid–base interaction. Infrared spectroscopy showed that the increased deposition correlated with an increase in the hydrogen-bonding functional groups on the cell surfaces.  相似文献   
4.
A review of non-DLVO interactions in environmental colloidal systems   总被引:1,自引:0,他引:1  
The interaction and behavior of surfaces orcolloids is of quantitative significance inunderstanding the transport and fate ofcompounds and microorganisms in environmentalsystems. Historically, the DLVO model ofcolloid stability has described theseinteractions. This model finds its basis in aforce (energy) balance that comprisesattractive van der Waals and repulsiveelectrostatic interactions. Recently, the DLVOmodel has been found unable to fully describebiotic and abiotic colloidal behavior inaqueous media. The suspending phase (commonlywater) is often treated as a force (energy)transmitting or propagating medium. It isreasonable to believe that the structure ofwater may participate in a more significantfashion. Moreover, other moieties (sorbed anddissolved) may also have non-DLVO effects. Significant work has been focused on extendingthe precepts of the traditional DLVO model toaccommodate these non-DLVO forces (energies). This paper reviews many of the interactionsthat play a role in environmental systems andare not commonly subsumed by the traditionalDLVO model: e.g., hydrogen bonding and thehydrophobic effect, hydration pressure,non-charge transfer Lewis acid baseinteractions, and steric interactions.  相似文献   
5.
The impact of surfactants on naphthalene and phenanthrene biodegradation and vice versa after surfactant flushing were evaluated using two anionic surfactants: sodium dodecyl sulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS); and two nonionic surfactants: POE (20) sorbitan monooleate (T-maz-80) and octylphenol poly(ethyleneoxy) ethanol (CA-620). Naphthalene and phenanthrene biodegradation varied differently in the presence of different surfactants. Naphthalene biodegradation was not impacted by the presence of SDS. In the presence of T-maz-80 and CA-620, naphthalene biodegradation occurred at a lower rate (0.14 d-1 for T-maz-80 and 0.19 d-1 for CA-620) as compared to un-amended control (0.29 d-1). Naphthalene biodegradation was inhibited by the presence of SDBS. In the presence of SDS, phenanthrene biodegradation occurred at a lower rate (0.10 d-1 as compared to un-amended control of 0.17 d-1) and the presence of SDBS, CA-620 and T-maz-80 inhibited phenanthrene biodegradation. The surfactants also responded differently to the presence of naphthalene and phenanthrene. In the presence of naphthalene, SDS biodegradation was inhibited; SDBS and T-maz-80 depleted at a lower rate (0.41d-1 and 0.12 d-1 as compared to 0.48 d-1 and 0.22 d-1). In the absence of naphthalene, CA-620 was not degradable, while in the presence of naphthalene, CA-620 began to degrade at a comparatively low rate (0.12 d-1). In the presence of phenanthrene, SDS biodegradation occurred at a lower rate (1.2 d-1 as compared to 1.68 d-1) and a similar trend was observed for T-maz-80. The depletion of SDBS and CA-620 did not change significantly. The choice of SDS for naphthalene-contaminated sites would not adversely affect the natural attenuation of naphthalene, in addition, naphthalene was preferentially utilized to SDS by naphthalene-acclimated microorganisms. Therefore, SDS was the best choice. T-maz-80 was also found to be usable in naphthalene-contaminated sites. For phenanthrene contaminated sites, SDS was the only choice.  相似文献   
6.
Biodegradation of BTEX by a microbial consortium isolated from a closed municipal landfill was studied using respirometric techniques. The kinetics of biodegradation were estimated from experimental oxygen uptake data using a nonlinear parameter estimation technique. All of the six compounds were rapidly degraded by the microbial culture and no substrate inhibition was observed at the concentration levels examined (200 mg L−1 as COD). Microbial growth and contaminant degradation were adequately described by the Monod equation. Considerable differences were observed in the rates of BTEX biodegradation as seen from the estimates of the kinetic parameters. A three-fold variation was seen in the values of the maximum specific growth rate, μmax. The highest value of μmax was 0.389 h−1 for p-xylene while o-xylene was characterized by a μmax value of 0.14 h−1, the lowest observed in this study. The half saturation coefficient, K s, and the yield coefficient, Y, varied between 1.288–4.681 mg L−1 and 0.272–0.645 mg mg−1, respectively. Benzene and o-xylene exhibited higher resistance to biodegradation while toluene and p-xylene were rapidly degraded. Ethylbenzene and m-xylene were degraded at intermediate rates. In biodegradation experiments with a multiple substrate matrix, substrate depletion was slower than in single substrate experiments, suggesting an inhibitory nature of substrate interaction. Received 15 February 1998/ Accepted in revised form 5 July 1998  相似文献   
7.
8.
A biodegradability assay should mimic in situ conditions as closely as possible. If this is not entirely possible, the assayshould at least include inoculum from the site. This review attemptsto condense current literature on anaerobic biodegradability assayand propose a clear assessment methodology to determine the fatesurfactants in anaerobic environments. It has been well documentedthat surfactant concentrations toxic to the microflora can lead tounwarranted failure of biodegradability assays. Thus, an important recommendation is to first perform a toxicity evaluation with relevant controls. Based on the results of this evaluation, a Tier 1biodegradability assay that assesses the rate of formation of reducedendproducts or the consumption of a particular terminal electron acceptor is recommended and supported by current literature. Balancedchemical equations for the complete mineralization of the substrateare then used to compare the amount of transformation that actuallyoccurred with that theoretically expected. When required, resultsshould be confirmed by Tier 2 testing, which includes monitoring ofsubstrate disappearance over time using a variety of analytical tools.These recommended procedures are scientifically defensible and havethe potential of providing environmentally relevant information on thefate of surfactant materials in the environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号