首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   18篇
  2021年   2篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   8篇
  2013年   13篇
  2012年   14篇
  2011年   5篇
  2010年   5篇
  2009年   2篇
  2008年   2篇
  2007年   10篇
  2006年   8篇
  2005年   4篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   4篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
  1971年   4篇
  1969年   2篇
  1967年   4篇
  1966年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1960年   1篇
  1956年   1篇
  1936年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
1.
To investigate the potential for and constraints on the evolution of compensatory ability, we performed a greenhouse experiment using Asclepias syriaca in which foliar damage and soil nutrient concentration were manipulated. Under low nutrient conditions, significant genetic variation was detected for allocation patterns and for compensatory ability. Furthermore, resource allocation to storage was positively, genetically correlated both with compensatory ability and biomass when damaged, the last two being positively, genetically correlated with each other. Thus, in the low nutrient environment, compensatory ability via resource allocation to storage provided greater biomass when damaged. A negative genetic correlation between compensatory ability and plant biomass when undamaged suggests that this mechanism entailed an allocation cost, which would constrain the evolution of greater compensatory ability when nutrients are limited. Under high nutrient conditions, neither compensatory ability nor allocation patterns predicted biomass when damaged, even though genetic variation in compensatory ability existed. Instead, plant biomass when undamaged predicted biomass when damaged. The differences in outcomes between the two nutrient treatments highlight the importance of considering the possible range of environmental conditions that a genotype may experience. Furthermore, traits that conferred compensatory ability did not necessarily contribute to biomass when damaged, demonstrating that it is critical to examine both compensatory ability and biomass when damaged to determine whether selection by herbivores can favor the evolution of increased compensation. Received: 2 April 1999 / Accepted: 21 September 1999  相似文献   
2.
The evolutionary response of plant populations to selection for increased defense may be constrained by costs of defense. The purpose of this study was to investigate such constraints on the evolution of defense due to a cost of defense manifested as a trade-off between defense and tolerance. Variation in the response to artificial damage (tolerance) among lines of Brassica rapa that had been artificially selected for foliar glucosinolate content (defense) was examined. Leaf area was removed from replicates of three selection lines (high glucosinolates, control, and low glucosinolates) at three damage levels (0%, 20%, and 60% damage). An external cost of defense would result in a statistically significant selection line by damage treatment interaction, with those selected for high defense expressing less tolerance than those selected for low defense. Damage treatment had a significant overall effect on estimated total fitness, with fitness declining with increasing damage level. Further, selection line also had a significant overall effect on estimated total fitness, with low-defense selection lines having higher fitness compared to both control and high-defense selection lines. More importantly, a cost of defense in terms of tolerance was demonstrated by a significant selection line-by-damage treatment interaction. This interaction was in the direction to demonstrate a genetic trade-off between defense and tolerance, with low-defense selection lines decreasing estimated total fitness in response to damage less than both control and high-defense selection lines. Variation in tolerance among selection lines was due to the greater ability of low-defense lines to maintain fruit and seed production despite the presence of damage. In terms of tolerance, this cost of glucosinolate production in B. rapa could constrain the evolution of increased defense and, in so doing, maintain individuals within the population that are poorly defended yet tolerant.  相似文献   
3.
D J Stowe  T Atkinson  N H Mann 《Biochimie》1989,71(9-10):1101-1105
Protein kinase activities were detected in cell-free extracts of the B385 derivative of Streptomyces coelicolor A3(2); at least 12 polypeptides, ranging in Mr from 6,000 to 98,000, were detectably phosphorylated, probably as O-monoesters, after incubation with gamma [32P]ATP. The culture stage of the mycelia used for production of the cell-free extracts determined the profile of phosphorylated polypeptides. Phosphoenol pyruvate acted as a potent modulator of the apparent degree of protein kinase activity. In addition Ca2+ ions, verapamil, chlorpromazine and anti-calmodulin antiserum had specific effects on the profile of phosphopolypeptides observed.  相似文献   
4.
Stowe AE  Holt JS 《Plant physiology》1988,87(1):183-189
The relationship of triazine resistance to decreased plant productivity was investigated in Senecio vulgaris L. F1 reciprocal hybrids were developed from pure-breeding susceptible (S) and resistant (R) lines. The four biotypes (S, S × R, R, R × S) were compared in terms of atrazine response, electron transport, carbon fixation, and biomass production. Atrazine response, carbon fixation rate, and PSII and whole-chain electron transport rates of hybrids were nearly identical to those of their respective maternal parents. Significant differences occurred between the two susceptible (S, S × R) and two resistant (R, R × S) biotypes in atrazine response (I50), carbon fixation rate, and PSII and whole-chain electron transport rates; PSI rates were identical in all four biotypes. Coupled and uncoupled, whole-chain electron transport rates of thylakoids of the two susceptible biotypes were approximately 50% greater than those of the two resistant biotypes at photon flux densities greater than 215 micromoles per square meter per second. Carbon exchange rates of the two susceptible biotypes were 23% greater than those of the two resistant biotypes. Hybrid biotypes (S × R, R × S) were not identical to their maternal parents in biomass production. The S, S × R, and R × S plants all achieved greater biomass than R plants. These results suggest that while the resistance mutation influences thylakoid performance, reduced productivity of triazine-resistant plants cannot be ascribed solely to decreases in electron transport or carbon assimilation rates brought about by the altered binding protein. Since the F1 hybrids differed from their maternal parents only in nuclear genes, it appears that the detrimental effects of the triazine resistance mutation on plant growth may be attenuated by interactions of the plastid and nuclear genomes.  相似文献   
5.
Z N Stowe  C B Nemeroff 《Life sciences》1991,49(14):987-1002
The endogenous neuropeptide, neurotensin (NT) alters the firing frequencies of certain neurons in the central nervous system (CNS). This is one of the findings that support the hypothesis that NT is a neurotransmitter substance. The direct application of NT on CNS neurons causes predominantly excitatory effects. These effects occur in a dose-related fashion via a calcium-dependent postsynaptic mechanism. The C-terminal hexapeptide fragment, NT 8-13 exerts similar electrophysiological effects to NT, while the N-terminal octapeptide fragment, NT 1-8 is devoid of such activity. NT produces a significant increase in the firing rates of individual neurons in the substantia nigra (SN), ventral tegmental area (VTA), medial prefrontal cortex (MPF), hypothalamus, and periaqueductal grey (PAG). This excitation occurs with a rapid onset and is readily reversible after cessation of NT application. In contrast, NT has no effect or weak inhibitory effects on the firing rates of neurons in the locus coeruleus (LC) and cerebellum. These electrophysiological actions of NT appear to be unique and not shared by other neurotransmitter and neuropeptide receptor antagonists and agonists that have been studied via direct co-application. NT attenuates dopamine (DA)-induced inhibition associated with direct application onto neurons in the SN and VTA both in vivo and in vitro. Intracellular recordings suggest that direct application of higher concentrations of NT appears to produce 'depolarization block' on individual neurons in the SN, VTA, MPF, and hypothalamus. The electrophysiological consequences of NT application not only show similarities to clinically efficacious antipsychotic medications, but also demonstrate the ability of NT to modulate the activity of dopamine (DA) neurons at the cellular level via specific NT binding sites. These findings further underscore the possibility that NT may play a pre-eminent role in the pathogenesis of, and psychopharmacological management of neurological and psychiatric disorders purportedly related to perturbation of CNS DA systems including schizophrenia.  相似文献   
6.
Summary Crab photoreceptors were examined after treatment by the osmium-DMSO-osmium method for high-resolution scanning electron microscopy. This technique of specimen preparation was also adapted for transmission electron microscopy, enabling sections up to 1 urn thick to be viewed in a conventional microscope at 75 kV. With appropriate pretreatment, some cytoskeletal elements can be visualised by both techniques. The methods were then used to investigate some of the daily changes known to occur in photoreceptor cell structure. Striking differences were found in the structure of Golgi bodies present in retinula cells during the synthesis and breakdown phases of the daily cycle of photoreceptor membrane turnover. Cyclic changes were also noticed in the mitochondria of retinula cells, and additional evidence was found for a previously proposed model of rhabdomeral microvillus formation.  相似文献   
7.
8.
9.
10.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号