首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   31篇
  104篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   5篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1970年   4篇
  1969年   1篇
  1968年   2篇
  1966年   2篇
  1953年   1篇
排序方式: 共有104条查询结果,搜索用时 0 毫秒
1.
2.
It has previously been shown that the murine coronavirus mouse hepatitis virus (MHV) undergoes RNA recombination at a relatively high frequency in both tissue culture and infected animals. Thus far, all of the recombination sites had been localized at the 5' half of the RNA genome. We have now performed a cross between MHV-2, a fusion-negative murine coronavirus, and a temperature-sensitive mutant of the A59 strain of MHV, which is fusion positive at the permissive temperature. By selecting fusion-positive viruses at the nonpermissive temperature, we isolated several recombinants containing multiple crossovers in a single genome. Some of the recombinants became fusion negative during the plaque purification. The fusion ability of the recombinants parallels the presence or absence of the A59 genomic sequences encoding peplomers. Several of the recombinants have crossovers within 3' end genes which encode viral structural proteins, N and E1. These recombination sites were not specifically selected with the selection markers used. This finding, together with results of previous recombination studies, indicates that RNA recombination can occur almost anywhere from the 5' end to the 3' end along the entire genome. The data also show that the replacement of A59 genetic sequences at the 5' end of gene C, which encodes the peplomer protein, with the fusion-negative MHV-2 sequences do not affect the fusion ability of the recombinant viruses. Thus, the crucial determinant for the fusion-inducing capability appears to reside in the more carboxyl portion of the peplomer protein.  相似文献   
3.
4.
5.
6.
Analysis of the radiolabeled tryptic peptides derived from the nucleocapsid proteins of two serotypes of mouse hepatitis virus showed each to have a small number of unique peptides; however, two biologically distinct variants of the JHM strain appeared identical. Analysis of [32P]-labeled nucleocapsid-derived peptides showed that phosphorylation occurs at only a few sites and that all three viruses differed in the sites of phosphorylation. No differences in the sites of phosphorylation were found between the nucleocapsid proteins derived from purified virions and the membranes or the cytosol of infected cells, suggesting that post-translational phosphorylation plays no role in the regulation of viral assembly. These data show unequivocal evidence that the nucleocapsid proteins of mouse hepatitis virus strains differ in the sites of phosphorylation.  相似文献   
7.
RNA-dependent RNA polymerase activity was found in mouse hepatitis virus strain A59 (MHV-A59)-infected cells. The enzyme was induced in the infected cells and could not be detected in the MHV-A59 virion. Two peaks of RNA polymerase activity, one early and the other late in infection, were detected. These polymerase activities were in temporal sequence with early and late virus-specific RNA synthesis. Both of them were found to be associated with membrane fractions. There were significant differences in the enzymatic properties of the two polymerases. The early polymerase, but not the late polymerase, could be activated by potassium ions in the absence of magnesium ions and also had a lower optimum pH than the late polymerase. It was therefore probable that the enzymes represent two different species of RNA polymerase and perform different roles in virus-specific RNA synthesis. The effects of cycloheximide on MHV-specific RNA synthesis were determined. Continuous protein synthesis was required for both early and late RNA synthesis and might also be required for shutoff of early RNA synthesis.  相似文献   
8.
The ability of a single injection of killed, intact bacteria to effect an increase in the proliferative rate of hemopoietic stem cells was studied. The total numbers of colony forming units in bone marrow, spleen and peripheral blood as well as the proportion of CFU in cycle was assessed. Splenic CFU were observed to rise exponentially due initially to in situ proliferation and later to proliferation in bone marrow with migration via the blood to the spleen. The results are discussed in the light of current concepts of stem cell regulation.  相似文献   
9.
Central nervous system (CNS) infections and autoimmune inflammatory disorders are often associated with retention of antibody-secreting cells (ASC). Although beneficial or detrimental contributions of ASC to CNS diseases remain to be defined, virus-specific ASC are crucial in controlling persistent CNS infection following coronavirus-induced encephalomyelitis. This report characterizes expression kinetics of factors associated with ASC homing, differentiation, and survival in the spinal cord, the prominent site of coronavirus persistence. Infection induced a vast, gamma interferon (IFN-γ)-dependent, prolonged increase in chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10, and CXCL11 mRNA, supporting a role for chemokine (C-X-C motif) receptor 3 (CXCR3)-mediated ASC recruitment. Similarly, CD4 T cell-secreted interleukin-21, a critical regulator of both peripheral activated B cells and CD8 T cells, was sustained during viral persistence. The ASC survival factors B cell-activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferating-inducing ligand (APRIL) were also significantly elevated in the infected CNS, albeit delayed relative to the chemokines. Unlike IFN-γ-dependent BAFF upregulation, APRIL induction was IFN-γ independent. Moreover, both APRIL and BAFF were predominantly localized to astrocytes. Last, the expression kinetics of the APRIL and BAFF receptors coincided with CNS accumulation of ASC. Therefore, the factors associated with ASC migration, differentiation, and survival are all induced during acute viral encephalomyelitis, prior to ASC accumulation in the CNS. Importantly, the CNS expression kinetics implicate rapid establishment, and subsequent maintenance, of an environment capable of supporting differentiation and survival of protective antiviral ASC, recruited as plasmablasts from lymphoid organs.  相似文献   
10.
Multiple sclerosis, an inflammatory, demyelinating disease of the CNS currently lacks an effective therapy. We show here that CNS inflammation and clinical disease in experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis, could be prevented completely by a replication-defective adenovirus vector expressing the anti-inflammatory cytokine IL-10 (replication-deficient adenovirus expressing human IL-10), but only upon inoculation into the CNS where local infection and high IL-10 levels were achieved. High circulating levels of IL-10 produced by i. v. infection with replication-deficient adenovirus expressing human IL-10 was ineffective, although the immunological pathways for disease are initiated in the periphery in this disease model. In addition to this protective activity, intracranial injection of replication-deficient adenovirus expressing human IL-10 to mice with active disease blocked progression and accelerated disease remission. In a relapsing-remitting disease model, IL-10 gene transfer during remission prevented subsequent relapses. These data help explain the varying outcomes previously reported for systemic delivery of IL-10 in experimental autoimmune encephalomyelitis and show that, for optimum therapeutic activity, IL-10 must either access the CNS from the peripheral circulation or be delivered directly to it by strategies including the gene transfer described here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号