首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   6篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   8篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   5篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1922年   1篇
  1920年   2篇
  1912年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
A technique for investigating the three-dimensional kinematics of knee motion during dynamic functional tasks has been developed. It involves the combined usage of a six degree of freedom goniometer and helical motion analysis. A detailed procedure for coordinate system alignment and calibration must be followed. Once established this entire procedure is routinely implementable. Ensemble averages from multiple walking strides reveal that this technique is sensitive enough to differentiate between the kinematics of an uninjured and injured knee.  相似文献   
2.
Rate constants for C(α)-proton transfer from racemic 2-(1-hydroxyethyl)-3,4-dimethylthi-oazolium ion catalyzed by lyoxide ion and various oxygen-containing and amine buffers were determined by iodination at 25°C and ionic strength 1.0 in H2O. Thermodynamically unfavorable C(α)-proton transfer to oxygen-containing and amine bases shows general base catalysis with a Brønsted β value of ≥0.92 for bases of pKa ≤ 15; this indicates that the thermodynamically favorable protonation reaction in the reverse direction has a Brønsted α value ≤0.08, which is consistent with diffusion-controlled reprotonation of the C(α)-enamine by most acids. General base catalysis is detectable because there is an 85-fold negative deviation from the Brønsted correlation by hydroxide ion. Primary kinetic isotope effects of (kH/kD)obsd = 1.0 for thermodynamically unfavorable proton transfer to buffer bases and hydroxide ion (ΔpKa ≤ −6) and a secondary solvent isotope effect of kDO/kHO = 2.3 for C(α)-proton transfer are consistent with a very late, enamine-like transition state and rate-limiting diffusional separation of buffer acids from the C(α)-enamine in the rate-limiting step, as expected for a “normal” acid. The second-order rate constants for catalysis by buffer bases were used to calculate a pKa of 21.8 for the C(α)-proton assuming a rate constant of 3 × 109 −1 s−1 for the diffusion-controlled reprotonation of the C(α)-enamine by buffer acids in the reverse direction. It is concluded (i) that C(α)-proton removal occurs at the maximum possible rate for a given equilibrium constant, and (ii) that C(α)-enamines can have a significant lifetime in aqueous solution and on thiamin diphosphate-dependent enzymes.  相似文献   
3.
Myotonic dystrophy (DM), an autosomal dominant neuromuscular disease, is caused by a CTG-repeat expansion, with affected individuals having > or = 50 repeats of this trinucleotide, at the DMPK locus of human chromosome 19q13.3. Severely affected individuals die early in life; the milder form of this disease reduces reproductive ability. Alleles in the normal range of CTG repeats are not as unstable as the (CTG)(> or = 50) alleles. In the DM families, anticipation and parental bias of allelic expansions have been noted. However, data on mechanism of maintenance of DM in populations are conflicting. We present a maximum-likelihood model for examining segregation distortion of CTG-repeat alleles in normal families. Analyzing 726 meiotic events in 95 nuclear families from the CEPH panel pedigrees, we find evidence of preferential transmission of larger alleles (of size < or = 29 repeats) from females (the probability of transmission of larger alleles is .565 +/- 0.03, different from .5 at P approximately equal .028). There is no evidence of segregation distortion during male meiosis. We propose a hypothesis that preferential transmission of larger CTG-repeat alleles during female meiosis can compensate for mutational contraction of repeats within the normal allelic size range, and reduced viability and fertility of affected individuals. Thus, the pool of premutant alleles at the DM locus can be maintained in populations, which can subsequently mutate to the full mutation status to give rise to DM.  相似文献   
4.
4-Oxalocrotonate tautomerase (4-OT), a homohexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids using Pro-1 as a general base (Stivers et al., 1996a, 1996b). We report the backbone and side-chain 1H, 15N, and 13C NMR assignments and the solution secondary structure for 4-OT using 2D and 3D homonuclear and heteronuclear NMR methods. The subunit secondary structure consists of an alpha-helix (residues 13-30), two beta-strands (beta 1, residues 2-8; beta 2, residues 39-45), a beta-hairpin (residues 50-57), two loops (I, residues 9-12; II, 34-38), and two turns (I, residues 30-33; II, 47-50). The remaining residues form coils. The beta 1 strand is parallel to the beta 2 strand of the same subunit on the basis of cross stand NH(i)-NH(j) NOEs in a 2D 15N-edited 1H-NOESY spectrum of hexameric 4-OT containing two 15N-labeled subunits/hexamer. The beta 1 strand is also antiparallel to another beta 1 strand from an adjacent subunit forming a subunit interface. Because only three such pairwise interactions are possible, the hexamer is a trimer of dimers. The diffusion constant, determined by dynamic light scattering, and the rotational correlation time (14.5 ns) estimated from 15N T1/T2 measurements, are consistent with the hexameric molecular weight of 41 kDa. Residue Phe-50 is in the active site on the basis of transferred NOEs to the bound partial substrate 2-oxo-1,6-hexanedioate. Modification of the general base, Pro-1, with the active site-directed irreversible inhibitor, 3-bromopyruvate, significantly alters the amide 15N and NH chemical shifts of residues in the beta-hairpin and in loop II, providing evidence that these regions change conformation when the active site is occupied.  相似文献   
5.
6.
7.
Base flipping is a highly conserved process by which enzymes swivel an entire nucleotide from the DNA base stack into their active site pockets. Uracil DNA glycosylase (UDG) is a paradigm enzyme that uses a base flipping mechanism to catalyze the hydrolysis of the N-glycosidic bond of 2'-deoxyuridine (2'-dUrd) in DNA as the first step in uracil base excision repair. Flipping of 2'-dUrd by UDG has been proposed to follow a "pushing" mechanism in which a completely conserved leucine side chain (Leu-191) is inserted into the DNA minor groove to expel the uracil. Here we report a novel implementation of the "chemical rescue" approach to show that the weak binding affinity and low catalytic activity of L191A or L191G can be completely or partially restored by substitution of a pyrene (Y) nucleotide wedge on the DNA strand opposite to the uracil base (U/A to U/Y). These results indicate that pyrene acts both as a wedge to push the uracil from the base stack in the free DNA and as a "plug" to hinder its reinsertion after base flipping. Pyrene rescue should serve as a useful and novel tool to diagnose the functional roles of other amino acid side chains involved in base flipping.  相似文献   
8.
Abasic sites are highly mutagenic lesions in DNA that arise as intermediates in the excision repair of modified bases. These sites are generated by the action of damage-specific DNA glycosylases and are converted into downstream intermediates by the specific activity of apurinic/apyrimidinic endonucleases. Enzymes in both families have been observed in crystal structures to impose deformations on the abasic-site DNA, including DNA kinking and base flipping. On the basis of these apparent protein-induced deformations, we propose that altered conformation and dynamics of abasic sites may contribute to the specificity of these repair enzymes. Previously, measurements of the steady-state fluorescence of the adenine analogue 2-aminopurine (2AP) opposite an abasic site demonstrated that binding of divalent cations could induce a conformational change that increased the accessibility of 2AP to solute quenching [Stivers, J. T. (1998) Nucleic Acids Res. 26, 3837-44]. We have performed time-resolved fluorescence experiments to characterize the states involved in this conformational change. Interpretation of these studies is based on a recently developed model attributing the static and dynamic fluorescence quenching of 2AP in DNA to aromatic stacking and collisional interactions with neighboring bases, respectively (see the preceding paper in this issue). The time-resolved fluorescence results indicate that divalent cation binding shifts the equilibrium of the abasic site between two conformations: a "closed" state, characterized by short average fluorescence lifetime and complex decay kinetics, and an "open" state, characterized by monoexponential decay with lifetime approximately that of the free nucleoside. Because the lifetime and intensity decay kinetics of 2AP incorporated into DNA are sensitive primarily to collisional interactions with the neighboring bases, the absence of dynamic quenching in the open state strongly suggests that the fluorescent base is extrahelical in this conformation. Consistent with this interpretation, time-resolved quenching studies reveal that the open state is accessible to solute quenching by potassium iodide, but the closed state is not. Greater static quenching is observed in the abasic site when the fluorescent base is flanked by 5'- and 3'-thymines than in the context of 5'- and 3'-adenines, indicating that 2AP is more stacked with the neighboring bases in the former sequence. These results imply that the conformation of the abasic site varies in a sequence-dependent manner. Undamaged sequences in which the abasic site is replaced by thymine do not exhibit an open state and have different levels of both static and dynamic quenching than their damaged homologues. These differences in structure and dynamics may be significant determinants of the high specific affinity of repair enzymes for the abasic site.  相似文献   
9.
The DNA repair enzyme uracil DNA glycosylase (UDG) catalyzes the hydrolysis of premutagenic uracil residues from single-stranded or duplex DNA, producing free uracil and abasic DNA. Here we report the high-resolution crystal structures of free UDG from Escherichia coli strain B (1.60 A), its complex with uracil (1.50 A), and a second active-site complex with glycerol (1.43 A). These represent the first high-resolution structures of a prokaryotic UDG to be reported. The overall structure of the E. coli enzyme is more similar to the human UDG than the herpes virus enzyme. Significant differences between the bacterial and viral structures are seen in the side-chain positions of the putative general-acid (His187) and base (Asp64), similar to differences previously observed between the viral and human enzymes. In general, the active-site loop that contains His187 appears preorganized in comparison with the viral and human enzymes, requiring smaller substrate-induced conformational changes to bring active-site groups into catalytic position. These structural differences may be related to the large differences in the mechanism of uracil recognition used by the E. coli and viral enzymes. The pH dependence of k(cat) for wild-type UDG and the D64N and H187Q mutant enzymes is consistent with general-base catalysis by Asp64, but provides no evidence for a general-acid catalyst. The catalytic mechanism of UDG is critically discussed with respect to these results.  相似文献   
10.
The DNA repair enzyme uracil DNA glycosylase has been crystallized with a cationic 1-aza-2'-deoxyribose-containing DNA that mimics the ultimate transition state of the reaction in which the water nucleophile attacks the anomeric center of the oxacarbenium ion-uracil anion reaction intermediate. Comparison with substrate and product structures, and the previous structure of the intermediate determined by kinetic isotope effects, reveals an exquisite example of geometric strain, least atomic motion, and electrophile migration in biological catalysis. This structure provides a rare opportunity to reconstruct the detailed structural transformations that occur along an enzymatic reaction coordinate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号