首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   8篇
  73篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  2001年   5篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
Homogeneous yeast cytoplasmic and mitochondrial phenylalanyl-tRNA synthetases (L-phenylalanine:tRNAPhe ligase (AMP-forming), EC 6.1.1.20) are analysed for structural differences. Only the large subunit of the mitochondrial enzyme is a glycoprotein with nearly 3% carbohydrate by weight. The carbohydrates present are: glucose, N-acetylglucosamine, mannose, galactose and N-acetylneuraminic acid. Removal of the sugar moieties yields an activity increase, but no significant change of sensitivity to proteolytic degradation. Antibodies to both homogeneous enzymes demonstrate a structural similarity for both types of subunit using the highly sensitive immunoblotting technique.  相似文献   
2.
2′-Deoxyadenosine and 3′-deoxyadenosine (cordycepin) can be incorporated into the 3′-terminal position of tRNAPhe by tRNA nucleotidyl transferase. tRNAPhe-C-C-2′dA and tRNAPhe-C-C-3′dA, missing the cis-diol group at the 3′-terminal end are resistant to periodate oxidation and are not able to form borate complexes. In aminoacylation experiments only the tRNAPhe-C-C-3′dA proved to be chargeable.  相似文献   
3.
Association constants for tRNA binding to poly(U) programmed ribosomes were assessed under standardized conditions with a single preparation of ribosomes, tRNAs, and elongation factors, respectively, at 15 and 10 mM Mg2+. Association constants were determined by Scatchard plot analysis (the constants are given in units of [10(7)/M] measured at 15 mM Mg2+): the ternary complex Phe-tRNA.elongation factor EF-Tu.GTP (12 +/- 3), Phe-tRNA (1 +/- 0.4), AcPhe-tRNA (0.7 +/- 0.3), and deacylated tRNA(Phe) (0.4 +/- 0.15) bind with decreasing affinity to the A site of poly(U)-programmed ribosomes. tRNA(Phe) (7.2 +/- 0.8) binds to the P site with higher affinity than AcPhe-tRNA (3.7 +/- 1.3). The affinity of the E site for deacylated tRNA(Phe) (1 +/- 0.2) is about the same as that of the A site for AcPhe-tRNA (0.7 +/- 0.3). At lower Mg2+ concentrations the affinity of the E site ligand becomes stronger relative to the affinities of the A site ligands. Phe-tRNA and ternary complexes can occupy the A site at 0 degrees C in the presence of poly(U) even if the P site is free, whereas, as already known, deacylated tRNA or AcPhe-tRNA bind first to the P site of programmed ribosomes. Hill plot analyses of the binding data confirm an allosteric linkage between A and E sites in the sense of a negative cooperativity.  相似文献   
4.
Immunoaffinity-purified DNA-polymerase-alpha--DNA-primase complex from calf thymus was phosphorylated in vitro by highly purified casein kinase II from the same tissue. Specific phosphorylation of the DNA-polymerizing alpha subunit and the primase-associated gamma subunit was observed. About 1 mol phosphate/mol polymerase--primase was incorporated. Despite this effect, neither the DNA polymerase nor the DNA primase activity were changed after phosphorylation by casein kinase II. Furthermore, dephosphorylation of polymerase--primase with alkaline phosphatase did not change the polymerase or the primase activity to a significant extent. Moreover, both alkaline phosphatase and casein kinase II had no effect on the processivity of DNA synthesis and on the lengths and amounts of primers formed by the DNA primase. Because DNA polymerase alpha maintained all its basic properties even after extensive treatment with alkaline phosphatase, it is unlikely that phosphorylation has a direct influence on the activities of the DNA-polymerase-alpha--DNA-primase complex. The possible influence of post-translational phosphorylation on the formation of a complex of polymerase alpha and its accessory proteins is discussed.  相似文献   
5.
2-Thiocytidine 5'-triphosphate, s2CTP, is able to replace CTP as a substrate for tRNA nucleotidyltransferase. s2CMP can be incorporated into both cytidine sites of the C-C-A terminus common to all tRNAs, and in the absence of ATP into at least two additional positions. This was shown by alkylation of the 2-thiocytidine residues with iodo[14C]acetamide, total nucleoside analysis, microgel electrophoresis and analysis of RNase T1 fragments of these tRNAs. The incorporation of the 3'-terminal AMP is not influenced by the additional s2CMP residues at pH 9.0. However, at pH 7.6 the additional s2CMP residues are hydrolysed and AMP can be incorporated into the normal position. Two different tRNAs with terminal 2-thiocytidine alkylated by iodoacetamide inhibit tRNA nucleotidyltransferase. This inhibition is significantly slower if an elongated species is used compared to a tRNA with alkylated 2-thiocytidine in the normal position 75. The addition of 2-mercaptoethanol reactivates the enzyme and leads to a cytidine containing tRNA. This reaction identifies the attacking nucleophile of the enzyme as cysteine residue, which is probably identical to a cysteine residue found in a similar experiment reported previously. The mechanism of the enzymatic and chemical reactions is discussed.  相似文献   
6.
Seven oligonucleotides corresponding to the 3' and 5' sequences of the acceptor stem of yeast tRNAPhe have been prepared by chemical synthesis, chemical-enzymatic synthesis or by isolation from tRNA hydrolysates. The oligonucleotides have been examined as substrates for phosphodiester bond synthesis in the presence of ATP as catalysed by yeast ATP (CTP): tRNA nucleotidyltransferase. Oligonucleotides which correspond to the sequence of the 3'-strand of the tRNA acceptor stem and possess no secondary structure exhibit little or no activity with the enzyme. The ability of the enzyme to catalyse the synthesis of a phosphodiester linkage using ATP and an oligonucleotide corresponding to the 3'-strand of the acceptor stem is in general dramatically increased when an oligonucleotide corresponding to the sequence of the 5'-strand of tRNA acceptor stem is present. In cases where significant activity was observed kinetic parameters have been determined.  相似文献   
7.
8.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
9.
A series of PPARγ agonists were synthesized from -tyrosine that incorporated low molecular weight N-substituents. The most potent analogue, pyrrole (Scheme 1 and Scheme 2), demonstrated a Ki of 6.9 nM and an EC50 of 4.7 nM in PPARγ binding and functional assays, respectively. Pyrrole (Scheme 1 and Scheme 2), which is readily synthesized from -tyrosine methyl ester in four steps, also demonstrated in vivo activity in a rodent model of Type 2 diabetes.  相似文献   
10.
By using micro disc electrophoresis and micro-diffusion techniques, the interaction of pure DNA-dependent RNA polymerase (EC 2.7.7.6) from Escherichia coli with the template, the substrates and the inhibitors heparin and rifampicin was investigated. The following findings were obtained: (1) heparin converts the 24S and 18S particles of the polymerase into the 13S form; (2) heparin inhibits RNA synthesis by dissociating the enzyme-template complex; (3) rifampicin does not affect the attachment of heparin to the enzyme; (4) the substrates ATP and UTP are bound by enzyme loaded with rifampicin; (5) rifampicin is bound by an enzyme-template complex to the same extent as by an RNA-synthesizing enzyme-template complex. From this it is concluded that the mechanism of the inhibition of RNA synthesis by rifampicin is radically different from that by heparin. As a working hypothesis to explain the inhibitory mechanism of rifampicin, it is assumed that it becomes very firmly attached to a position close to the synthesizing site and only blocks this when no synthesis is in progress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号