首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   5篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2001年   1篇
  1986年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Cortical granules, which are specialized secretory organelles found in ova of many organisms, have been isolated from the eggs of the sea urchins Arbacia punctulata and Strongylocentrtus pupuratus by a simple, rapid procedure. Electron micropscope examination of cortical granules prepared by this procedure reveals that they are tightly attached to large segments of the plasma membrane and its associated vitelline layer. Further evidence that he cortical granules were associated with these cell surface layers was obtained by (125)I-labeling techniques. The cortical granule preparations were found to be rich in proteoesterase, which was purified 32-fold over that detected in a crude homogenate. Similarly, the specific radioactivity of a (125)I-labeled, surface glycoprotein was increased 40-fold. These facts, coupled with electron microscope observations, indicate the isolation procedure yields a preparation in which both the cortical granules and the plasma membrane-vitelline layer are purified to the same extent. Gel electrophoresis of the membrane-associated cortical granule preparation reveals the presence of at least eight polypeptides. The major polypeptide, which is a glycotprotein of apparent mol wt of 100,000, contains most of the radioactivity introduced by (125)I-labeling of the intact eggs. Lysis of the cortical granules is observed under hypotonic conditions, or under isotonic conditions if Ca(2+) ion is present. When lysis is under isotonic conditions is induced by addition of Ca(2+) ion, the electron-dense contents of the granules remain insoluble. In contrast, hypotonic lysis results in release of the contents of the granule in a soluble form. However, in both cases the (125)I-labeled glycoprotein remains insoluble, presumably because it is a component of either the plasma membrane or the vitelline layer. All these findings indicate that, using this purified preparation, it should be possible to carry out in vitro studies to better define some of the initial, surface-related events observed in vivo upon fertilization.  相似文献   
2.
Pigment epithelium‐derived factor (PEDF) is upregulated in obese rodents and is involved in the development of insulin resistance (IR). We aim to explore the relationships between PEDF, adiposity, insulin sensitivity, and cardiovascular risk factors in obese women with polycystic ovary syndrome (PCOS) and weight‐matched controls and to examine the impact of endurance exercise training on PEDF. This prospective cohort intervention study was based at a tertiary medical center. Twenty obese PCOS women and 14 non‐PCOS weight‐matched women were studied at baseline. PEDF, cardiometabolic markers, detailed body composition, and euglycemic—hyperinsulinemic clamps were performed and measures were repeated in 10 PCOS and 8 non‐PCOS women following 12 weeks of intensified aerobic exercise. Mean glucose infusion rate (GIR) was 31.7% lower (P = 0.02) in PCOS compared to controls (175.6 ± 96.3 and 257.2 ± 64.3 mg.m?2.min?1) at baseline, yet both PEDF and BMI were similar between groups. PEDF negatively correlated to GIR (r = ?0.41, P = 0.03) and high‐density lipoprotein (HDL) (r = ?0.46, P = 0.01), and positively to cardiovascular risk factors, systolic (r = 0.41, P = 0.02) and diastolic blood pressure (r = 0.47, P = 0.01) and triglycerides (r = 0.49, P = 0.004). The correlation with GIR was not significant after adjusting for fat mass (P = 0.07). Exercise training maintained BMI and increased GIR in both groups; however, plasma PEDF was unchanged. In summary, PEDF is not elevated in PCOS, is not associated with IR when adjusted for fat mass, and is not reduced by endurance exercise training despite improved insulin sensitivity. PEDF was associated with cardiovascular risk factors, suggesting PEDF may be a marker of cardiovascular risk status.  相似文献   
3.
Endurance training represents one extreme in the continuum of skeletal muscle plasticity. The molecular signals elicited in response to acute and chronic exercise and the integration of multiple intracellular pathways are incompletely understood. We determined the effect of 10 days of intensified cycle training on signal transduction in nine inactive males in response to a 1-h acute bout of cycling at the same absolute workload (164 +/- 9 W). Muscle biopsies were taken at rest and immediately and 3 h after the acute exercise. The metabolic signaling pathways, including AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR), demonstrated divergent regulation by exercise after training. AMPK phosphorylation increased in response to exercise ( approximately 16-fold; P < 0.05), which was abrogated posttraining (P < 0.01). In contrast, mTOR phosphorylation increased in response to exercise ( approximately 2-fold; P < 0.01), which was augmented posttraining (P < 0.01) in the presence of increased mTOR expression (P < 0.05). Exercise elicited divergent effects on mitogen-activated protein kinase (MAPK) pathways after training, with exercise-induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation being abolished (P < 0.01) and p38 MAPK maintained. Finally, calmodulin kinase II (CaMKII) exercise-induced phosphorylation and activity were maintained (P < 0.01), despite increased expression ( approximately 2-fold; P < 0.05). In conclusion, 10 days of intensified endurance training attenuated AMPK, ERK1/2, and mTOR, but not CaMKII and p38 MAPK signaling, highlighting molecular pathways important for rapid functional adaptations and maintenance in response to intensified endurance exercise and training.  相似文献   
4.
The data requirements and resources needed to develop multispecies indicators of fishing impacts are often lacking and this is particularly true for coral reef fisheries. Size-spectra, relationships between abundance and body-size class, regardless of taxonomy, can be calculated from simple sizeabundance data. Both the slope and the mid-point height of the relationship can be compared at different fishing intensities. Here, we develop size-spectra for reef fish assemblages using body size- abundance data collected by underwater visual census in each of ten fishing grounds across a known gradient of fishing intensity in the Kadavu Island group, Fiji. Slopes of the size-spectra became steeper (F9,69=3.20, p<0.01) and the height declined (F9,69=15.78, p<0.001) with increasing fishing intensity. Regressions of numbers of individuals per size class across grounds were negative for all size classes, although the slope was almost zero for the smallest size class. Response to exploitation of each size class category was greatest for larger fish. Steepening of the slope with increasing fishing intensity largely resulted from reductions in the relative abundance of large fish and not from the ecological release of small fish following depletion of their predators. The slope and height of the size-spectrum appear to be good indicators of fishing effects on reef fish assemblages.  相似文献   
5.

Introduction

Bone morphogenetic proteins (BMPs) are critical growth factors in the osteogenic differentiation of progenitor cells during development in embryos and fracture repair in adults. Although recombinant BMPs are in use clinically, their clinical efficiency needs to be improved. The biological activities of BMPs are naturally regulated by extracellular binding proteins. The specific hypotheses tested in this study were as follows: the BMP inhibitor chordin is produced endogenously during the osteogenic differentiation of human mesenchymal stem cells (MSCs); and blockade of the activity of the BMP inhibitor increases the rate of osteogenic differentiation of human MSCs in vitro.

Methods

Human MSCs were derived from bone marrow from an iliac crest aspirate and from patients undergoing hip hemiarthroplasty. The MSCs were induced down the osteogenic pathway using standard osteogenic differentiation media, and expressions of BMP-2 and chordin were determined by gene expression analysis. During osteogenic differentiation, chordin knockdown was induced using RNA interference. Osteogenic differentiation was assessed by measuring the expression of alkaline phosphatase and calcium deposition. The differences in expression of osteogenic makers between groups were compared by analysis of variance, followed by Gabriel post hoc test.

Results

We demonstrate the expression of BMP-2 and chordin in human MSCs during osteogenic differentiation. Knockdown of chordin by RNA interference in vitro resulted in a significant increase in the expression of the osteogenic marker alkaline phosphatase and the deposition of extracellular mineral, in response to osteogenic stimulation.

Conclusion

We conclude that endogenously produced chordin constrains the osteogenic differentiation of human MSCs. The targeting of BMP inhibitors, such as chordin, may provide a novel strategy for enhancing bone regeneration.  相似文献   
6.
BACKGROUND: Aberrant DNA methylation has been recognized in human breast carcinogenesis as a common molecular alteration associated with the loss of expression of a number of key regulatory genes. The present study was undertaken to determine whether methylation and expression of p16 and FHIT genes would correlate with the estrogen receptor (ER) and progesterone receptor (PR) status. METHODS: Methylation-specific polymerase chain reaction, messenger RNA (mRNA) expression analysis, immunohistochemistry, and Western blot analysis were performed to study the methylation of p16 and FHIT genes in 351 pairs of malignant/normal breast tissues. We examined the expression of ER and PR in those specimens by immunohistochemistry. Mutations of p16 and FHIT genes in tumors were detected by direct sequencing. RESULTS: The frequency of hypermethylation was 31.9% and 36.8% in p16 and FHIT genes, respectively, and showed significant harmony in concordant hypermethylation (P < .0001). In postmenopausal patients, methylation frequency in both genes is significantly higher in poorly and moderately differentiated tumors. Loss of protein expression of p16 and FHIT in 77 and 74 tumors, respectively, is associated with their methylation status in premenopausal women. CONCLUSION: We did not find any significant differences in tumor-related gene methylation patterns relevant to both ER and PR status of breast tumors.  相似文献   
7.
We determined the effect of fat adaptation on metabolism and performance during 5 h of cycling in seven competitive athletes who consumed a standard carbohydrate (CHO) diet for 1 day and then either a high-CHO diet (11 g. kg(-1)x day(-1) CHO, 1 g x kg(-1) x day(-1) fat; HCHO) or an isoenergetic high-fat diet (2.6 g x kg(-1) x day(-1) CHO, 4.6 g x kg(-1) x day(-1) fat; fat-adapt) for 6 days. On day 8, subjects consumed a high-CHO diet and rested. On day 9, subjects consumed a preexercise meal and then cycled for 4 h at 65% peak O(2) uptake, followed by a 1-h time trial (TT). Compared with baseline, 6 days of fat-adapt reduced respiratory exchange ratio (RER) with cycling at 65% peak O(2) uptake [0.78 +/- 0.01 (SE) vs. 0.85 +/- 0.02; P < 0.05]. However, RER was restored by 1 day of high-CHO diet, preexercise meal, and CHO ingestion (0.88 +/- 0.01; P < 0.05). RER was higher after HCHO than fat-adapt (0.85 +/- 0.01, 0.89 +/- 0.01, and 0.93 +/- 0.01 for days 2, 8, and 9, respectively; P < 0.05). Fat oxidation during the 4-h ride was greater (171 +/- 32 vs. 119 +/- 38 g; P < 0.05) and CHO oxidation lower (597 +/- 41 vs. 719 +/- 46 g; P < 0.05) after fat-adapt. Power output was 11% higher during the TT after fat-adapt than after HCHO (312 +/- 15 vs. 279 +/- 20 W; P = 0.11). In conclusion, compared with a high-CHO diet, fat oxidation during exercise increased after fat-adapt and remained elevated above baseline even after 1 day of a high-CHO diet and increased CHO availability. However, this study failed to detect a significant benefit of fat adaptation to performance of a 1-h TT undertaken after 4 h of cycling.  相似文献   
8.
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training.  相似文献   
9.
Microstructure of dibenzo-18-crown-6 (DB18C6) and DB18C6/Li+ complex in different solvents (water, methanol, chloroform, and nitrobenzene) have been analyzed using radial distribution function (RDF), coordination number (CN), and orientation profiles, in order to identify the role of solvents on complexation of DB18C6 with Li+, using molecular dynamics (MD) simulations. In contrast to aqueous solution of LiCl, no clear solvation pattern is found around Li+ in the presence of DB18C6. The effect of DB18C6 has been visualized in terms of reduction in peak height and shift in peak positions of gLi-Ow. The appearance of damped oscillations in velocity autocorrelation function (VACF) of complexed Li+ described the high frequency motion to a “rattling” of the ion in the cage of DB18C6. The solvent-complex interaction is found to be higher for water and methanol due to hydrogen bond (HB) interactions with DB18C6. However, the stability of DB18C6/Li+ complex is found to be almost similar for each solvent due to weak complex-solvent interactions. Further, Li+ complex of DB18C6 at the liquid/liquid interface of two immiscible solvents confirm the high interfacial activity of DB18C6 and DB18C6/Li+ complex. The complexed Li+ shows higher affinity for water than organic solvents; still they remain at the interface rather than migrating toward water due to higher surface tension of water as compared to organic solvents. These simulation results shed light on the role of counter-ions and spatial orientation of species in pure and hybrid solvents in the complexation of DB18C6 with Li+. Graphical Abstract
DB18C6/Li+ complex in pure solvents (water, methanol, chloroform, and nitrobenzene) and water/nitrobenzene interface  相似文献   
10.
Polycystic ovary syndrome (PCOS) is a common condition in women associated with menstrual irregularity and anovulation. While obesity worsens and weight loss or exercise improves reproduction function in PCOS, the mechanism for this is unclear. The aim of this study was to examine the effect of exercise on ovarian hormones [anti-Müllerian hormone (AMH)] and menstrual and ovulatory function in women with and without PCOS. Overweight women with (n=7) and without (n=8) PCOS of comparable age, weight and BMI undertook a 12-week intensified endurance exercise training program (1?h 3 times/week) with no structured energy restriction. Primary outcomes were AMH, ovulation (weekly urinary pregnanediol) and menstrual regularity. Secondary outcomes were insulin resistance (euglycemic hyperinsulinemic clamp) and body composition (computed tomography and dual X-ray absorptiometry). Exercise decreased BMI, total and android fat mass and improved insulin sensitivity for all women. AMH was significantly higher in women with PCOS compared to controls before (p<0.001) and after exercise (p=0.001). There was a significant interaction between AMH changes with exercise and PCOS status (p=0.007) such that women without PCOS had no change in AMH (+1.4±5.2?pmol/l, p=0.48) while women with PCOS had a decrease in AMH (-?13.2±11.7?pmol/l, p=0.025). Exercise is associated with improvements in ovarian hormones in women with abnormal ovarian function. This suggests that mechanisms associated with ovarian dysfunction can be improved by exercise in PCOS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号