首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6102篇
  免费   594篇
  国内免费   3篇
  2024年   4篇
  2023年   39篇
  2022年   110篇
  2021年   205篇
  2020年   115篇
  2019年   125篇
  2018年   166篇
  2017年   118篇
  2016年   215篇
  2015年   399篇
  2014年   414篇
  2013年   479篇
  2012年   623篇
  2011年   555篇
  2010年   324篇
  2009年   276篇
  2008年   405篇
  2007年   384篇
  2006年   363篇
  2005年   299篇
  2004年   274篇
  2003年   234篇
  2002年   187篇
  2001年   42篇
  2000年   21篇
  1999年   27篇
  1998年   53篇
  1997年   30篇
  1996年   20篇
  1995年   17篇
  1994年   23篇
  1993年   14篇
  1992年   18篇
  1991年   11篇
  1990年   9篇
  1989年   4篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   11篇
  1983年   4篇
  1982年   9篇
  1981年   10篇
  1980年   9篇
  1979年   6篇
  1978年   3篇
  1976年   4篇
  1973年   4篇
  1971年   3篇
排序方式: 共有6699条查询结果,搜索用时 15 毫秒
1.
Sheep are used as models for the human spine, yet comparative in vivo data necessary for validation is limited. The purpose of this study was therefore to compare spinal motion and trunk muscle activity during active trunk movements in sheep and humans. Three-dimensional kinematic data as well as surface electromyography (sEMG) of spinal flexion and extension was compared in twenty-four humans in upright (UR) and 4-point kneeling (KN) postures and in 17 Austrian mountain sheep. Kinematic markers were attached over the sacrum, posterior iliac spines, and spinous and transverse processes of T5, T8, T11, L2 and L5 in humans and over the sacrum, tuber sacrale, T5, T8, T12, L3 and L7 in sheep. The activity of erector spinae (ES), rectus abdominis (RA), obliquus externus (OE), and obliquus internus (OI) were collected. Maximum sEMG (MOE) was identified for each muscle and trial, and reported as a percentage (MOE%) of the overall maximally observed sEMG from all trials. Spinal range of motion was significantly smaller in sheep compared to humans (UR / KN) during flexion (sheep: 6–11°; humans 12–34°) and extension (sheep: 4°; humans: 11–17°). During extension, MOE% of ES was greater in sheep (median: 77.37%) than UR humans (24.89%), and MOE% of OE and OI was greater in sheep (OE 76.20%; OI 67.31%) than KN humans (OE 21.45%; OI 19.34%), while MOE% of RA was lower in sheep (21.71%) than UR humans (82.69%). During flexion, MOE% of RA was greater in sheep (83.09%) than humans (KN 47.42%; UR 41.38%), and MOE% of ES in sheep (45.73%) was greater than KN humans (14.45%), but smaller than UR humans (72.36%). The differences in human and sheep spinal motion and muscle activity suggest that caution is warranted when ovine data are used to infer human spine biomechanics.  相似文献   
2.
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits.  相似文献   
3.
4.
5.
6.
Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.  相似文献   
7.
8.
Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community-level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best-fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koa and Metrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community-level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.  相似文献   
9.
The influence of both predator and prey size on the shift from a pulling to a drilling predatory response was examined in the intertidal octopus Octopus dierythraeus, using an experimental program. Additionally, selective drilling, where particular regions of the prey are targeted, was examined for a variety of bivalve and gastropod prey. O. dierythraeus always initially attempted to pull bivalves apart. Shells that were eventually drilled were always subjected to significantly more pulling attempts than those that could be pulled apart, indicating that octopus are willing to expend more energy to access the flesh quickly. There was no defined threshold where bivalve size caused an octopus to switch from a pulling to a drilling response. Instead, there was a broad size range where the octopus could adopt either handling method and it varied for each individual. Octopus may only able to pull open bivalves before the molecular ratchet or ‘catch’ mechanism that many bivalves possess is engaged. This might explain the lack of a relationship between either octopus or bivalve size and the success of pulling, as it is likely that when the bivalves were presented to individual octopus they were either setting the ‘catch’ mechanism, or had already engaged it. O. dierythraeus demonstrated selective drilling on a variety of molluscan prey, with penetration sites differing between prey species. O. dierythraeus targeted the valve periphery, which was the thinnest part of the shell, therefore minimizing handling time. O. dierythraeus always drilled gastropods, but did not target the thinnest regions of the shells, with drill site varying according to the morphology of the prey. Elongate species with pronounced aperture lips were drilled in the apical region, close to the columella on the side of the opercula whereas nonelongate species were drilled immediately above the aperture. The location of drilling sites may represent a trade-off between targeting the most effective places to inject paralyzing secretions and the mechanically simplest places to drill.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号