首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2013年   1篇
  2012年   2篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
We studied the effects of interferon (IFN)- 2b on cells obtained from the brain of human embryos (4 to 12 weeks of gestation). It was demonstrated that IFN exerts modulatory effects on biochemical and physico-chemical properties of cells of embryonic nerve tissue in the early stages of embryonic development (from 4 weeks of gestation). IFN decreased the content of protein, inhibited the activity of Na+,K+-ATPase, and induced changes in the superficial charge of the plasma membrane. Based on the obtained experimental data, we suppose that IFN- 2b is involved in regulation of neurogenesis.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 363–369, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   
3.
To elucidate molecular mechanisms of neurotropic action of a recombinant interferon, IFN-2b (laferon), its effect on transport of 22Na+ through the membrane of cultured human neuroblastoma cells (line IMR 32) was investigated. Within the first minutes after treatment with IFN-2b, the influx of 22Na+ ions was reduced by 20%, as compared with the control. Depolarization of the plasma membrane by a mixture of veratrine and scorpion (Leiurus quinquestriatus) toxin (200 and 10 g/ml, respectively) increased this flux by 50% in the control and by 70% in the IFN-2b-treated cells. A blocker of voltage-operated sodium channels, tetrodotoxin (TTX, 4 · 10-7 M), suppressed the inward flux of 22Na+ ions (completely in the control cells and by 75% in the IFN-2b-treated cells). The influx of 22Na+ ions into neuroblastoma cells depended on the concentration of IFN-2b in the incubation medium, reaching a maximum at concentrations of 600-1000 IU/ml. This allows us to suggest that entry of Na+ ions into neuroblastoma cells caused by IFN-2b is basically performed through voltage-operated TTX-sensitive sodium channels.  相似文献   
4.
How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6DN) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6DN plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6DN was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6DN npr1 and rop6DN sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6DN plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6DN plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6DN plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution.Rho of Plants (ROPs), also known as RACs (for clarity, the ROP nomenclature will be used throughout this article), comprise a plant-specific group of Rho family small G proteins. Like other members of the Ras superfamily of small G proteins, ROPs function as molecular switches, existing in a GTP-bound “on” state and a GDP-bound “off” state. In the GTP-bound state, ROPs interact with specific effectors that transduce downstream signaling or function as scaffolds for interaction with additional effector molecules (Berken and Wittinghofer, 2008). Conserved point mutations in the G1 (P loop) Gly-15 or the G3 (switch II) Gln-64, which abolish GTP hydrolysis, or the G1 Thr-20 or G4 Asp-121 that compromise GDP/GTP exchange, can form either constitutively active or dominant negative mutants, respectively (Feig, 1999; Berken et al., 2005; Berken and Wittinghofer, 2008; Sorek et al., 2010). Primarily based on studies with neomorphic mutants, ROPs have been implicated in the regulation of cytoskeleton organization and dynamics, vesicle trafficking, auxin transport and response, abscisic acid (ABA) response, and response to pathogens (Nibau et al., 2006; Yalovsky et al., 2008; Yang, 2008; Lorek et al., 2010; Wu et al., 2011; and refs. therein).In Arabidopsis (Arabidopsis thaliana), there are 11 ROP proteins (Winge et al., 1997). Assigning specific functions to individual members of this family is difficult, however, because ROPs are functionally redundant. A ROP10 loss-of-function mutant was reported to be ABA hypersensitive (Zheng et al., 2002), displaying enhanced expression of tens of genes in response to ABA treatments (Xin et al., 2005). However, in the absence of exogenous ABA, gene expression in the rop10 mutant was similar to that in wild-type plants (Xin et al., 2005). Loss of leaf epidermis pavement cell polarity was reported for rop4 rop2-RNAi (for RNA interference) double mutant plants (Fu et al., 2005). Mild changes in pavement and hypocotyl cell structure and microtubule (MT) organization were reported for a rop6 loss-of-function mutant (Fu et al., 2009).The involvement of ROPs in auxin-regulated development has been addressed in several studies (Wu et al., 2011). Ectopic expression of a dominant negative ROP2 (rop2DN) mutant under regulation of the 35S promoter resulted in a loss of apical dominance and a reduction in the number of lateral roots. In contrast, ectopic expression of constitutively active ROP2 (rop2CA) caused an increase in the number of lateral roots and an enhanced decrease in primary root length in response to auxin. Consistent with these findings, the expression of a constitutively active NtRAC1 in tobacco (Nicotiana tabacum) protoplasts induced the expression of auxin-regulated genes in the absence of auxin and promoted the formation of protein nuclear bodies containing components of the proteasome and COP9 signalosome (Tao et al., 2002, 2005; Wu et al., 2011). The ROP effector ICR1 (for interactor of constitutively active ROP1) regulates polarized secretion and is required for polar auxin transport (Lavy et al., 2007; Bloch et al., 2008; Hazak et al., 2010; Hazak and Yalovsky, 2010). In the root, local auxin gradients induce the accumulation of ROPs in trichoblasts at the site of future root hair formation (Fischer et al., 2006). Recently, it was shown that interdigitation of leaf epidermis pavement cells depends on Auxin-Binding Protein1 (ABP1)-mediated ROP activation (Xu et al., 2010). Taken together, these data indicate that ROPs are involved in both mediating the auxin response and facilitating directional auxin transport. It is still unclear, however, which ROPs function in these processes.ROP function was linked to plant defense responses in several studies. In rice (Oryza sativa), OsRAC1 is a positive regulator of the hypersensitive response, possibly through interactions with the NADPH oxidase RbohB, Required for Mla12 Resistance, and Heat Shock Protein90 (Ono et al., 2001; Thao et al., 2007; Wong et al., 2007). Interestingly, other members of the rice ROP family, namely RAC4 and RAC5, are negative regulators of resistance to the rice blast pathogen Magnaporthe grisea (Chen et al., 2010). Similar to rice, when expressed in tobacco, dominant negative OsRAC1 suppressed the hypersensitive response (Moeder et al., 2005). In barley (Hordeum vulgare), several constitutively active ROP/RAC mutants and a MT-associated ROPGAP1 loss-of-function mutant enhanced susceptibility to the powdery mildew Blumeria graminis f. sp. hordei (Bgh). The activated ROP-enhanced susceptibility to Bgh was attributed to disorganization of the actin cytoskeleton and was shown to depend on Mildew Resistance Locus O (MLO; Schultheiss et al., 2002, 2003; Opalski et al., 2005; Hoefle et al., 2011). In barley, three ROP proteins, HvRACB, HvRAC1, and HvRAC3, were linked to both development and pathogen response (Schultheiss et al., 2005; Pathuri et al., 2008; Hoefle et al., 2011).We have analyzed the function of the Arabidopsis AtROP6 (ROP6) by characterizing its expression pattern and its regulation by auxin and the phenotype of plants that express rop6DN under the regulation of its endogenous promoter. The utilization of the dominant negative mutant overcame functional redundancy, while expression under the regulation of the endogenous promoter enabled the analysis of ROP6 function in a developmental context. Phenotypic and gene expression analyses indicate that ROP6 functions in developmental, salicylic acid (SA)-dependent, and SA-independent defense response pathways.  相似文献   
5.
To clarify the mechanism of isopropyl-N-phenyl carbamate (IPC) action on higher plant cells the sensitivity of microtubules (cortical network and mitotic arrays) and microtubule organizing centers to IPC treatment (30 microM) in IPC-resistant and sensitive Nicotiana sylvestris lines was studied. It was clearly demonstrated that IPC does not depolymerize plant MTs but causes the MTOC damage in cells, which results in MTOC fragmentation, splitting of the spindle poles and in abnormal division spindle formation. It was also found that IPC-resistance of mutant N. sylvestris line correlates not with tubulin resistance to IPC action but possibly with resistance of one of the proteins involved in MTOC composition.  相似文献   
6.
7.
The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ‐tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral’s effect on microtubules was both dose‐ and time‐dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ‐tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP‐Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral’s effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules.  相似文献   
8.
9.
We investigated the actions of human recombinant α2-interferon and a secondary messenger of its action, 2′-5′-oligoadenylate, on tetrodotoxin (TTX)-sensitive sodium transport using human (IMR-32) and murine (NIE-115) neuroblastoma cells. In biochemical experiments using22Na, human interferon was shown to increase entry of22Na into IMR-32 neuroblastoma cells through the channels activated by veratrine and scorpion toxin. This increase was clearly dose-dependent. Cell treatment with TTX completely inhibited this sodium transport. On the contrary, 2′-5′-oligoadenylate depressed entry of22Na into neuroblastoma cells. The activation effect was not observed under the action of human α2-interferon on TTX-sensitive sodium flows to the murine neuroblastoma cells, which demonstrated the species-related specificity of this agent.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号