首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   4篇
  国内免费   1篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2003年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
Engineered bacterial sensors have potential applications in human health monitoring, environmental chemical detection, and materials biosynthesis. While such bacterial devices have long been engineered to differentiate between combinations of inputs, their potential to process signal timing and duration has been overlooked. In this work, we present a two‐input temporal logic gate that can sense and record the order of the inputs, the timing between inputs, and the duration of input pulses. Our temporal logic gate design relies on unidirectional DNA recombination mediated by bacteriophage integrases to detect and encode sequences of input events. For an E. coli strain engineered to contain our temporal logic gate, we compare predictions of Markov model simulations with laboratory measurements of final population distributions for both step and pulse inputs. Although single cells were engineered to have digital outputs, stochastic noise created heterogeneous single‐cell responses that translated into analog population responses. Furthermore, when single‐cell genetic states were aggregated into population‐level distributions, these distributions contained unique information not encoded in individual cells. Thus, final differentiated sub‐populations could be used to deduce order, timing, and duration of transient chemical events.  相似文献   
5.
We propose an approach to integrate the theory, simulations, and experiments in protein-folding kinetics. This is realized by measuring the mean and high-order moments of the first-passage time and its associated distribution. The full kinetics is revealed in the current theoretical framework through these measurements. In the experiments, information about the statistical properties of first-passage times can be obtained from the kinetic folding trajectories of single molecule experiments (for example, fluorescence). Theoretical/simulation and experimental approaches can be directly related. We study in particular the temperature-varying kinetics to probe the underlying structure of the folding energy landscape. At high temperatures, exponential kinetics is observed; there are multiple parallel kinetic paths leading to the native state. At intermediate temperatures, nonexponential kinetics appears, revealing the nature of the distribution of local traps on the landscape and, as a result, discrete kinetic paths emerge. At very low temperatures, exponential kinetics is again observed; the dynamics on the underlying landscape is dominated by a single barrier. The ratio between first-passage-time moments is proposed to be a good variable to quantitatively probe these kinetic changes. The temperature-dependent kinetics is consistent with the strange kinetics found in folding dynamics experiments. The potential applications of the current results to single-molecule protein folding are discussed.  相似文献   
6.

Background

The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture.

Methodology/Principal Findings

In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam.

Conclusions/Significance

We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.  相似文献   
7.
Synenkephalin (SYN), the nonopioid amino-terminal portion of proenkephalin (PRO), is stable and well conserved in mammals and therefore a promising marker for PRO systems. We immunized rabbits with synthetic [Tyr63]SYN(63-70)-octapeptide, coupled by glutaraldehyde to bovine serum albumin. In radioimmunoassay (RIA) using antiserum no. 681, [Tyr63]SYN(63-70)-octapeptide as standard, and 125I-[Tyr63]SYN(63-70)-octapeptide as tracer, the IC50 was approximately 51 fmol/100-microliters sample at equilibrium or 12 fmol/100 microliters in disequilibrium, and the sensitivity was approximately 3 fmol/100 microliters. Cross-reactivity of the assay was 100% with [Cys63]SYN(63-70)-octapeptide and with bovine adrenal 8.6-kilodalton peptide digested with trypsin and carboxypeptidase B, but less than 0.1% with transforming growth factor-alpha, less than or equal to 2 x 10(-6) with Leu-Leu-Ala [SYN(68-70)-tripeptide], and much less than 10(-6) with all other peptides tested. Therefore in RIA this antiserum is specific for the free carboxyl terminus of SYN. Because the peptide detected after enzyme digestion is the complete SYN(63-70)-octapeptide, we refer to the RIA as an assay for SYN(63-70). Tissue extracts were made in 1 M acetic acid, dried, reconstituted in Tris-CaCl2, and digested sequentially with trypsin plus carboxypeptidase B. Extracts from bovine corpus striatum gave SYN(63-70) RIA dilution curves parallel to the standard curve both before and after digestion. Digestion increased the amount of immunoreactive SYN(63-70) in striatum by a factor of 1.5-2.0. The ratio of total immunoreactive [Met5]enkephalin to total immunoreactive SYN(63-70) (after sequential digestion) was approximately 6:1. At least 90% of the immunoreactive SYN(63-70) in extracts of bovine caudate nucleus eluted from Sephadex G-100 with an apparent molecular weight equal to that of bovine PRO(1-77). Using the new RIA we were able to detect and characterize SYN processing for the first time in extracts of whole rat brain, human globus pallidus, and human pheochromocytoma. Results in these tissues were similar to those in cattle, in that most stored SYN had been processed to a free carboxyl terminus. Since the C-terminal octapeptide of SYN is practically identical in all known mammalian PRO, antiserum no. 681 should be useful for detecting, measuring, and purifying SYN from various mammals, including human beings.  相似文献   
8.

Background  

Recent advances in experimental and computational technologies have fueled the development of many sophisticated bioinformatics programs. The correctness of such programs is crucial as incorrectly computed results may lead to wrong biological conclusion or misguide downstream experimentation. Common software testing procedures involve executing the target program with a set of test inputs and then verifying the correctness of the test outputs. However, due to the complexity of many bioinformatics programs, it is often difficult to verify the correctness of the test outputs. Therefore our ability to perform systematic software testing is greatly hindered.  相似文献   
9.
Immunofluorescence tests with antisera to various peptides reveal the presence of a FMRFamide-like peptide in neurons of hydromedusae belonging to three orders. An avian pancreatic polypeptide-like peptide may also be present in certain neurons. Distribution of FMRFamide-like immunoreactivity (Fa-IR) has been studied in Proboscidactyla (O. Limnomedusae), Phialidium and Aequorea (O. Leptomedusae) and Aglantha (O. Trachymedusae). These findings are compared with results obtained with Polyorchis (O. Anthomedusae) by Grimmelikhuijzen and Spencer [J. comp. Neurol. 230 , 361 (1984)]. All species show Fa-IR neurons in the tentacles linked by interconnecting neurites running in the outer marginal nerve ring. A Fa-IR plexus is present in the manubrium and, except in Aglantha, this system merges with a plexus associated with the subumbrellar radial muscles. As in Polyorchis, the swimming motor neurons are unstained. In contrast to this species, only a small percentage of the neurites composing the nerve rings are stained. The giant axons of Aglantha show no Fa-IR. The cnidothylaces of Proboscidactyla contain neurons reacting with antisera to FMRFamide and APP. Present evidence suggests that in hydromedusae Fa-IR is confined to distinct subsets of neurons. These appear to be either sensory units or units supplying smooth muscles, but they are not involved in the innervation of striated muscles.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号