首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  25篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有25条查询结果,搜索用时 0 毫秒
1.
Summary The generally accepted concept that dorsoventral flatness and/or small size of benthic stream invertebrates staying on the surface of the bottom substratum allows a current-sheltered life in the boundary layer (Ambühl 1959) is checked by means of the new technique of Laser Doppler Anemometry (LDA). With LDA measurement of flow can be done nearly punctually without any mechanical disturbance. Mapping the current velocities around the body of Ecdyonurus cf. venosus (Insecta, Ephemeroptera) and Ancylus fluviatilis (Gastropoda) gives evidence that boundary layer separation occurs above the animals' bodies. Our results indicate that the velocities around the body of benthic stream invertebrates and probably the forces acting on them are much more complicate than is suggested by the currently accepted boundary layer concept.  相似文献   
2.
The use of databases for the conservation of biodiversity is increasing. During the last decade, such a database has been created for European stream macroinvertebrates. Today, it includes 527 sites that are the least human-impacted representatives of many stream types across many European regions. It includes data on the abundance of 312 invertebrate genera, several environmental site characteristics, collection methods, bibliographic data sources, and 11 biological traits of the genera (e.g. size, life cycle, food and feeding habits, described in 61 categories). The database will be useful in addressing many topics that are potentially relevant to biodiversity conservation. To illustrate this potential, we provide examples of how the data could be exploited. First, we describe the frequency of some taxonomic and biological characteristics (e.g. richness and diversity of genera and traits) of the macroinvertebrate communities and assess how these characteristics are related (e.g. how trait richness increases with genus richness). Second, we describe the frequency of some characteristics of the genera and traits (e.g. occurrence frequency, abundance, dispersion index) and again assess how these characteristics are related (e.g. how occurrence increases with abundance). Finally, we suggest how the database could be developed into a collective, publicly accessible database that covers stream types and regions of Europe more comprehensively.  相似文献   
3.
Understanding the action of filters on the biological trait composition of communities is constrained by the multitude of filter types (e.g. abiotic vs biotic, actual vs historical) that may cause changes of a multitude of traits (e.g. small vs large body size, short vs long life cycle) at a multitude of spatial scales (e.g. continent vs landscape vs local site). Using published data on the as natural as possible abundances and 11 biological traits (described through 63 categories) of 254 European stream invertebrate genera, we assessed how already available knowledge can serve to identify the importance of the action of different types of trait filters at two spatial scales. Therefore, we analysed observed and simulated abundance‐weighted trait compositions at the local scale of 384 running water sites (RWS) and at the landscape scale of 14 large biogeographical regions (LER). Actual abiotic filters acted significantly and independently of the taxonomic richness on the invertebrate traits at the RWS‐ and LER‐scale, whereas biotic filters had no significant effect. Evidence for the action of historical trait filters across Europe was only weak at both scales. Size, reproductive cycle, respiration and locomotion technique, feeding habits and vulnerability to disturbance responded to altitude and stream width of the RWS according to existing views about the effects of riparian, physiological, interstitial or disturbance controls of these traits. These controls acted independently on trait categories that did not co‐occur within the genera, because correlations of size categories with other trait categories were higher in the abundance‐weighted trait array (across communities) than in the original trait array (across genera). Overall, many of the 63 trait categories were scarcely affected by the trait filters considered in this study. Therefore, we briefly discuss potential effects of continental filters and of stream system‐specific, local physical filters, as the latter should produce similar trait patterns on a global scale. Our study suggests that analyses of the currently available knowledge can simplify the complicated hypothetical framework on trait filter actions, which sharpens the focus on future research needs.  相似文献   
4.
5.
1. One current approach to the prediction of community characteristics is to use models of key local-scale processes (e.g. niche dimensions) affecting individuals and to estimate the effects of these attributes over larger scales. We tested this approach, focusing on how the hydraulic habitat structures fluvial fish communities. 2. We used a recent statistical habitat model to predict fish community characteristics in eleven reaches in the Rhône river basin in France. Predictions were made ‘blindly’ since most reaches were not used to calibrate the model. The model reflects species preferences for local hydraulics. We made predictions of the fish community from the local hydraulic conditions found in the reaches under low flow conditions. The overall abundance and the relative abundance (both as indices) of fish species, specific size classes and species traits (i.e. reproductive, trophic, morphological and others) were predicted. We summarized our predictions of the relative abundance of species as two ‘community structure indices’ using Principal Component Analysis. 3. Our predictions from low-flow hydraulics were compared with long-term observations of fish communities. The relative abundance of species actually observed depended largely on zoogeographic factors within the Rhône basin which could not be predicted by the model. The model predicted 13% of the variance in the indices of relative abundance at the species level and 23% of this variance at the trait level for all zoogeographic regions combined. However, when focused on reaches within a geographic region, the model explained up to 47% of the same variance. Therefore, geographic regions act as ‘filters’ on the relative abundance of species, but hydraulics do affect fish communities within a given geographical context. 4. For the synthetic ‘community structure indices’, we obtained good predictions from hydraulics independently of the geographical context (variance explained up to 95%). These indices were linked to simple key hydraulic characteristics of river reaches (Froude and/or Reynolds number). The indices enabled interpretations of the links between hydraulics, geomorphology, discharge and community patterns. These links were consistent with existing knowledge of species and their traits. 5. In addition to the above validations, the habitat model partly explained the observed effects of impoundment on fish communities. 6. The present results show that stream hydraulics strongly impact fish community structure. Consequently, our findings confirm that community characteristics can be predicted using models of the local-scale habitat requirements of the species forming the community.  相似文献   
6.
Large-scale diversity patterns in relationship to environmental factors at multiple spatial scales have been well-studied for many taxonomic groups; however, freshwater ecosystems remain understudied. Biodiversity is now widely recognized to encompass many more factors than just species numbers, particularly the inclusion of functional attributes. In this study, we examined richness patterns of stream invertebrate genera and their biological traits (“functional” richness) across 364 sites in the contiguous USA. In particular, we focused on the relationship between taxonomy- and trait-based richness to test for functional redundancy in stream communities. Further, we obtained environmental data to model the relative importance of local and watershed-scale environmental factors and residual spatial (latitude, longitude) influences on taxonomy- and trait-based richness. Trait richness increased linearly with genus richness (slope ≪ 1), although this appears to be an artifact of the restricted range of genus richness in our study (32 genera maximum). Furthermore, trait richness was significantly lower than expected under random community assembly. In contrast, the Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera exhibited a saturating pattern between trait and genus richness and trait richness was no different from random. Our study indicates that there is functional redundancy among stream invertebrate genera, likely as a result of harsh habitat filters limiting trait diversity. Environmental factors (including spatially structured environmental factors) were always more important than spatial factors (latitude, longitude) in structuring richness despite strong longitudinal patterns of all richness measures (these differences were only significant for EPT genera). Finally, we found no significant difference in the relative importance of local and watershed scale environmental factors for taxonomy- and trait-based richness.  相似文献   
7.
B. Statzner  T. F. Holm 《Oecologia》1989,78(2):145-157
Summary Using Laser Doppler Anemometry we measured current velocities in the median plane around dead lotic macroinvertebrates in a flume which reproduced natural near bottom hydraulics. We investigated specimens of the gastropods Ancylus, Acroloxus, and Potamopyrgus, the amphipod Gammarus, and the larval caddisflies Anabolia, Micrasema, and Silo of various size, various alignment to the flow or which were otherwise manipulated in order to clarify certain questions of adaptation of shape or case building style to flow, or the effects of flow on field distribution patterns. The steepest velocity gradients close to the animals were found near areas of their bodies protruding furthest into the flow. In such regions the rates of potential diffusive exchange processes, the potential corrasion (abrasion through suspended solids), and, for larger specimens, the lift forces (directed towards the water surface) must be highest. Posterior of these areas growing boundary layers formed above those species whose upper contour was approximately parallel to the upstream-downstream direction of the flow. All specimens removed momentum from the flow and thus experience a drag force (directed downstream). From the complete data set we derived the following general conclusions about the physical effects of potential morphological adaptations, taking into consideration diffusion through boundary layers, corrasion, lift forces, friction and pressure drag forces: The physical significance of these five factors generally depends on the Reynolds number of an animal and is largely affected by flow separation, which was significantly related to the ratio of body length to height and the slope of the posterior contour. A simultaneous effective morphological adaptation to all five factors is physically impossible and, in addition, would have to change from life at low (e.g. a young, small specimen of a species) to life at high (e.g. a fully grown specimen of the same species) Reynolds number.  相似文献   
8.
Aim To investigate spatial autocorrelation of taxonomic stream invertebrate groups (richness and composition) at a large geographical scale and to analyse the importance of exogenous and endogenous factors. Location The Mediterranean Basin. Methods For exogenous factors, we used large‐scale factors related to climate, geology and river zonation; for endogenous factors, we used the dispersal mode of each taxonomic group. After describing and analysing spatial patterns of genus richness and genus composition of stream invertebrate groups in the Mediterranean Basin, we computed Moran’s I before and after accounting for the exogenous factors and related it to the endogenous factors. Results In relation to genus richness, most of the taxonomic groups did not show significant spatial autocorrelation, suggesting that no main large‐scale exogenous or endogenous factors were important and that local‐scale factors were probably controlling taxonomic richness. In contrast, for genus composition, all taxonomic groups except Odonata had significant spatial autocorrelation before accounting for the environment. After accounting for the environment, most taxonomic groups still had a significant spatial autocorrelation, but it decreased with their increasing dispersal ability (from Crustacea to Coleoptera). Thus, spatial taxonomic composition of groups with the strongest dispersal potential is mainly related to exogenous factors, whereas that of groups with weaker dispersal potential is related to a combination of exogenous and endogenous factors. Main conclusions Our results illustrate the importance of dispersal as an endogenous factor causing spatial autocorrelation and suggest that ignoring endogenous factors can lead to misunderstandings when explaining large‐scale community patterns.  相似文献   
9.
10.
  • 1 The methods used to indicate the biological state of streams are often based on taxonomic composition, and the abundance of species or other taxa. This ‘taxonomic structure’ varies among ecoregions and cannot be applied to wider geographical areas. Therefore, we assessed the species traits of benthic macroinvertebrates from semi‐natural reference sites as a potential benchmark for large‐scale biomonitoring. Our purpose was to assess the stability of community structure, based on the representation of taxa and of traits, across large gradients of geology (sedimentary to granitic), altitude (65–1982 m), geographical coordinates (0° 48′ W to 7° 20′ E and 42° 52′ to 48° 44′ N), stream order (1–5) and slope (0.5–60‰).
  • 2 We used invertebrate abundance data from the 62 most natural French stream sites available. These abundance data served to weight the occurrence of ‘biological’ traits, such as reproductive characteristics, mobility, resistance forms, food, feeding habits, respiration, and ‘ecological’ traits, such as preferences for temperature, trophic level, saprobity, biogeographic distribution, longitudinal zonation, substratum and current velocity.
  • 3 Multivariate analyses of taxonomic composition demonstrated a clear site gradient from lowlands to uplands and from calcareous to granitic geology. In contrast, community structure based on both biological and ecological traits was stable across environmental gradients.
  • 4 The frequency distribution of biological traits indicated that the stream benthos of the ‘reference sites’ had a mixture of categories which confirmed theoretical predictions for temporally stable and spatially variable habitats. A mixture of ecological trait categories also occurred at our reference sites. Thus, semi‐natural benthic macroinvertebrate communities are functionally diverse. Moreover, we included an initial application of these traits to a case of slightly to moderately polluted sites to show that the impact of humans significantly changes this natural functional diversity.
  • 5 Future studies should focus on the potential for various biological and ecological traits to discriminate different human impacts on the benthic macroinvertebrates of running waters, and on the integration of this functional application into a general ‘reference‐condition’ approach.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号