首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   4篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2015年   6篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   8篇
  2004年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1995年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
1.
A method of rapid freezing in supercooled Freon 22 (monochlorodifluoromethane) followed by cryoultramicrotomy is described and shown to yield ultrathin sections in which both the cellular ultrastructure and the distribution of diffusible ions across the cell membrane are preserved and intracellular compartmentalization of diffusabler ions can be quantitated. Quantitative electron probe analysis (Shuman, H., A.V. Somlyo, and A.P. Somlyo. 1976. Ultramicros. 1:317-339.) of freeze-dried ultrathin cryto sections was found to provide a valid measure of the composition of cells and cellular organelles and was used to determine the ionic composition of the in situ terminal cisternae of the sarcoplasmic reticulum (SR), the distribution of CI in skeletal muscle, and the effects of hypertonic solutions on the subcellular composition if striated muscle. There was no evidence of sequestered CI in the terminal cisternae of resting muscles, although calcium (66mmol/kg dry wt +/- 4.6 SE) was detected. The values of [C1](i) determined with small (50-100 nm) diameter probes over cytoplasm excluding organelles over nuclei or terminal cisternae were not significantly different. Mitochondria partially excluded C1, with a cytoplasmic/ mitochondrial Ci ratio of 2.4 +/- 0.88 SD. The elemental concentrations (mmol/kg dry wt +/- SD) of muscle fibers measured with 0.5-9-μm diameter electron probes in normal frog striated muscle were: P, 302 +/- 4.3; S, 189 +/- 2.9;C1, 24 +/- 1.1;K, 404 +/- 4.3, and Mg, 39 +/- 2.1. It is concluded that: (a) in normal muscle the "excess CI" measured with previous bulk chemical analyses and flux studies is not compartmentalized in the SR or in other cellular organelles, and (b) the cytoplasmic C1 in low [K](0) solutions exceeds that predicted by a passive electrochemical distribution. Hypertonic 2.2 X NaCl, 2.5 X sucrose, or 2.2 X Na isethionate produced: (a) swollen vacuoles, frequently paired, adjacent to the Z lines and containing significantly higher than cytoplasmic concentrations of Na and Cl or S (isethionate), but no detectable Ca, and (b) granules of Ca, Mg, and P = approximately (6 Ca + 1 Mg)/6P in the longitudinal SR. It is concluded that hypertonicity produces compartmentalized domains of extracellular solutes within the muscle fibers and translocates Ca into the longitudinal tubules.  相似文献   
2.
3.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
4.
Acid-sensing ion channels (ASIC) are ligand-gated cation channels that are highly expressed in peripheral sensory and central neurons. ASIC are transiently activated by decreases in extracellular pH and are thought to play important roles in sensory perception, neuronal transmission, and excitability, and in the pathology of neurological conditions, such as brain ischemia. We demonstrate here that the heavy metals Ni(2+) and Cd(2+) dose-dependently inhibit ASIC currents in hippocampus CA1 neurons and in Chinese hamster ovary (CHO) cells heterologously expressing these channels. The effects of both Ni(2+) and Cd(2+) were voltage-independent, fast, and reversible. Neither metal affected activation and desensitization kinetics but rather decreased pH-sensitivity. Moreover, distinct ASIC isoforms were differentially inhibited by Ni(2+) and Cd(2+). External application of 1 mM Ni(2+) rapidly inhibited homomeric ASIC1a and heteromeric ASIC1a/2a channels without affecting ASIC1b, 2a, and ASIC3 homomeric channels and ASIC1a/3 and 2a/3 heteromeric channels. In contrast, external Cd(+) (1 mM) inhibited ASIC2a and ASIC3 homomeric channels and ASIC1a/2a, 1a/3, and 2a/3 heteromeric channels but not ASIC1a homomeric channels. The acid-sensing current in isolated rat hippocampus CA1 neurons, thought to be carried primarily by ASIC1a and 1a/2a, was inhibited by 1 mM Ni(2+). The current study identifies ASIC as a novel target for the neurotoxic heavy metals Cd(2+) and Ni(2+).  相似文献   
5.
The epithelial Na+ channel (ENaC) functions as a pathway for Na+ absorption in the kidney and lung, where it is crucial for Na+ homeostasis and blood pressure regulation. ENaC is regulated in part through signaling pathways that control the ubiquitination state of ENaC lysines. A defect in ubiquitination causes Liddle syndrome, an inherited form of hypertension. Here we determined that α-, β-, and γENaC are also substrates for lysine acetylation. Trichostatin A (TSA), a histone deacetylase inhibitor, enhanced ENaC acetylation and increased ENaC abundance in the total cell lysate and at the cell surface. Moreover, TSA increased ENaC current in Fischer rat thyroid and kidney collecting duct epithelia. We found that HDAC7 is expressed in the kidney collecting duct, supporting a potential role for this histone deacetylase in ENaC regulation. HDAC7 overexpression reduced ENaC abundance and ENaC current, whereas ENaC abundance and current were increased by silencing of HDAC7. ENaC and HDAC7 form a complex, as detected by coimmunoprecipitation. We observed a reciprocal relationship between acetylation and ubiquitination; TSA reduced ENaC ubiquitination, whereas HDAC7 increased ubiquitination. By reducing ENaC ubiquitination, TSA decreased the rate of ENaC degradation. Thus, acetylation increases epithelial Na+ absorption by antagonizing ENaC ubiquitination. This stabilizes ENaC, and hence, increases its abundance at the cell surface.  相似文献   
6.
The PY and YXXphi motifs are canonical sorting signals involved in trafficking. Nedd4-2 and the mu(2)-subunit of the AP-2 complex target these motifs to facilitate internalization. Epithelial Na(+) channel (ENaC) subunits contain both motifs in their cytosolic COOH termini where they overlap ((S/T)PPPXYX(S/T)phi). Just preceding the PY and embedded within the YXXphi motifs are conserved serine/threonine. We test here whether these conserved Ser/Thr modulate ENaC activity by influencing the function of the internalization domains. We find that co-expression of dominant-negative dynamin (K44A) with ENaC increases channel activity. Conversely, co-expression of Nedd4-2 and epsin with ENaC decrease activity. Alanine substitution of the conserved Thr(628) preceding the PY motif in gamma-mENaC had no effect on basal activity. Channels with this mutation, however, responded to K44A and epsin but not Nedd4-2. Similarly, mutation of the proline repeat in the PY motif of gamma-mENaC disrupted only Nedd4-2 regulation having no effect on regulation by K44A and epsin. Alanine substitution of the conserved Thr within the YXX motif of gamma-mENaC (T635A) increased basal activity. Channels containing this mutation responded to Nedd4-2 but not K44A and epsin. Channels containing the T635(D/E) substitution in gamma-mENaC did not have increased basal activity and responded to Nedd4-2 but not K44A. The double mutant T628A,T635A did not respond to Nedd4-2 or K44A. Mutation of Thr(628) and Thr(635) also disrupted ENaC precipitation with the mu(2)-subunit of the AP-2 complex. Moreover, the YXXphi motif, independent of the PY motif, was sufficient to target degradation with T635A disrupting this effect. These results demonstrate that the overlapping PY and YXXphi motifs in ENaC are, in some instances, capable of independent function and that the Ser/Thr just preceding and within these domains impact this function.  相似文献   
7.
Activity of the epithelial Na(+) channel (ENaC) is rate-limiting for Na(+) (re)absorption across electrically tight epithelia. ENaC is a heteromeric channel comprised of three subunits, alpha, beta, and gamma, with each subunit contributing to the functional channel pore. The subunit stoichiometry of ENaC remains uncertain with electrophysiology and biochemical experiments supporting both a tetramer with a 2alpha:1beta:1gamma stoichiometry and a higher ordered channel with a 3alpha:3beta:3gamma stoichiometry. Here we used an independent biophysical approach based upon fluorescence resonance energy transfer (FRET) between differentially fluorophore-tagged ENaC subunits to determine the subunit composition of mouse ENaC functionally reconstituted in Chinese hamster ovary and COS-7 cells. We found that when all three subunits were co-expressed, ENaC contained at least two of each type of subunit. Findings showing that ENaC subunits interact with similar subunits in immunoprecipitation studies are consistent with these FRET results. Upon native polyacrylamide gel electrophoresis, moreover, oligomerized ENaC runs predominantly as a single species with a molecular mass of >600 kDa. Because single ENaC subunits have a molecular mass of approximately 90 kDa, these results also agree with the FRET results. The current results as a whole, thus, are most consistent with a higher ordered channel possibly with a 3alpha:3beta:3gamma stoichiometry.  相似文献   
8.
9.
Amiloride‐sensitive sodium entry, via the epithelial sodium channel (ENaC), is the rate‐limiting step for Na+ absorption. Epidermal growth factor (EGF) is involved in the regulation of Na+ transport and ENaC activity. However it is still controversial exactly how EGF regulates ENaC and Na+ absorption. The aim of the present study was to characterize the EGF regulation of Na+ transport in cultured mouse renal collecting duct principal mpkCCDc14 cells, a highly differentiated cell line which retains many characteristics of the cortical collecting duct (CCD). EGF dose dependently regulates basal transepithelial Na+ transport in two phases: an acute phase (<4 h) and a chronic phase (>8 h). Similar effects were observed with TGF‐α, HB‐EGF, and amphiregulin which also belong to the EGF‐related peptide growth factor family. Inhibition of MEK1/2 by PD98059 or U0126 increased acute effects and disrupted chronic effects of EGF on Na+ reabsorption. Inhibition of PI3‐kinase with LY294002 abolished acute effect of EGF. As assessed by Western blotting, ErbB2 is the most predominant member of the ErbB family detected in mpkCCDc14 cells. Immunohistochemistry analysis revealed localization of ErbB2 in the CCD in Sprague–Dawley rat kidneys. Both acute and long‐term effects of EGF were abolished when cells were treated with tyrphostin AG‐825 and ErbB2 inhibitor II, chemically dissimilar selective inhibitors of the ErbB2 receptor. Thus, we conclude that EGF and its related growth factors are important for maintaining transepithelial Na+ transport and that EGF biphasically modulates sodium transport in mpkCCDc14 cells via the ErbB2 receptor. J. Cell. Physiol. 223: 252–259, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
10.
Dietary salt intake controls epithelial Na+ channel (ENaC)-mediated Na+ reabsorption in the distal nephron by affecting status of the renin-angiotensin-aldosterone system (RAAS). Whereas regulation of ENaC by aldosterone is generally accepted, little is known about whether other components of RAAS, such as angiotensin II (Ang II), have nonredundant to aldosterone-stimulatory actions on ENaC. We combined patch clamp electrophysiology and immunohistochemistry in freshly isolated split-opened distal nephrons of mice to determine the mechanism and molecular signaling pathway of Ang II regulation of ENaC. We found that Ang II acutely increases ENaC Po, whereas prolonged exposure to Ang II also induces translocation of α-ENaC toward the apical membrane in situ. Ang II actions on ENaC Po persist in the presence of saturated mineralocorticoid status. Moreover, aldosterone fails to stimulate ENaC acutely, suggesting that Ang II and aldosterone have different time frames of ENaC activation. AT1 but not AT2 receptors mediate Ang II actions on ENaC. Unlike its effect in vasculature, Ang II did not increase [Ca2+]i in split-opened distal nephrons as demonstrated using ratiometric Fura-2-based microscopy. However, application of Ang II to mpkCCDc14 cells resulted in generation of reactive oxygen species, as probed with fluorescent methods. Consistently, inhibiting NADPH oxidase with apocynin abolished Ang II-mediated increases in ENaC Po in murine distal nephron. Therefore, we concluded that Ang II directly regulates ENaC activity in the distal nephron, and this effect complements regulation of ENaC by aldosterone. We propose that stimulation of AT1 receptors with subsequent activation of NADPH oxidase signaling pathway mediates Ang II actions on ENaC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号