首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   4篇
  2018年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
Circadian clock function depends on the tightly regulated exclusion or presence of clock proteins within the nucleus. A newly induced long-period timeless mutant, tim(blind), encodes a constitutively hypophosphorylated TIM protein. The mutant protein is not properly degraded by light, and tim(blind) flies show abnormal behavioral responses to light pulses. This is probably caused by impaired nuclear accumulation of TIM(BLIND) protein, which we observed in brain pacemaker neurons and photoreceptor cells of the compound eye. tim(blind) encodes two closely spaced amino acid changes compared to the wild-type TIM protein; one of them is within a putative nuclear export signal of TIM. Under constant conditions, tim(blind) flies exhibit 26-hr free-running locomotor rhythms, which are not correlated with a period lengthening of eclosion rhythms and period-luciferase reporter-gene oscillations. Therefore it seems possible that TIM--in addition to its well-established role as core clock factor--functions as a clock output factor, involved in determining the period length of adult locomotor rhythms.  相似文献   
2.
Circadian clocks of most organisms are synchronized with the 24-hour solar day by the changes of light and dark. In Drosophila, both the visual photoreceptors in the compound eyes as well as the blue-light photoreceptor Cryptochrome expressed within the brain clock neurons contribute to this clock synchronization. A specialized photoreceptive structure located between the retina and the optic lobes, the Hofbauer-Buchner (H-B) eyelet, projects to the clock neurons in the brain and also participates in light synchronization. The compound eye photoreceptors and the H-B eyelet contain Rhodopsin photopigments, which activate the canonical invertebrate phototransduction cascade after being excited by light. We show here that 2 of the photopigments present in these photoreceptors, Rhodopsin 5 (Rh5) and Rhodopsin 6 (Rh6), contribute to light synchronization in a mutant (norpA(P41) ) that disrupts canonical phototransduction due to the absence of Phospholipase C-β (PLC-β). We reveal that norpA(P41) is a true loss-of-function allele, resulting in a truncated PLC-β protein that lacks the catalytic domain. Light reception mediated by Rh5 and Rh6 must therefore utilize either a different (nonretinal) PLC-β enzyme or alternative signaling mechanisms, at least in terms of clock-relevant photoreception. This novel signaling mode may distinguish Rhodopsin-mediated irradiance detection from image-forming vision in Drosophila.  相似文献   
3.
Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber (‘time giver’) and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16–20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.  相似文献   
4.
The no-on-transient-A (nonA) gene of Drosophila melanogaster influences vision, courtship song, and viability. The nonA-encoded polypeptide is inferred to bind single-stranded nucleic acids. Although sequence-analysis of NONA implies that it belongs to a special interspecific family of this protein type, it does contain two classical RNA recognition motifs (RRM). Their behavioral significance was assayed by generating transgenic strains that were singly or multiply mutated within the relatively N-terminal motif (RRM1) or within RRM2. Neither class of mutation affected NONA binding to polytene chromosomes. The former mutations led to extremely low viability, accompanied by diminished adult longevities that were much worse than for a nonA-null mutant, implying that faulty interpolypeptide interactions might accompany the effects of the amino-acid substitutions within RRM1. All in vitro-mutated types caused optomotor blindness and an absence of transient spikes in the electroretinogram. Courtship analysis discriminated between the effects of the mutations: the RRM2-mutated type generated song pulses and trains that tended to be mildly mutant. These phenotypic abnormalities reinforce the notion that nonA''s ubiquitous expression has its most important consequences in the optic lobes, the thoracic ganglia, or both, depending in part on the nonA allele.  相似文献   
5.
6.
7.
8.
In Drosophila melanogaster, disruption of night by even short light exposures results in degradation of the clock protein TIMELESS (TIM), leading to shifts in the fly molecular and behavioral rhythms. Several lines of evidence indicate that light entrainment of the brain clock involves the blue-light photoreceptor cryptochrome (CRY). In cryptochrome-depleted Drosophila (cry(b)), the entrainment of the brain clock by short light pulses is impaired but the clock is still entrainable by light-dark cycles, probably due to light input from the visual system. Whether cryptochrome and visual transduction pathways play a role in entrainment of noninnervated, directly photosensitive peripheral clocks is not known and the subject of this study. The authors monitored levels of the clock protein TIM in the lateral neurons (LNs) of larval brains and in the renal Malpighian tubules (MTs) of flies mutant for the cryptochrome gene (cry(b)) and in mutants that lack signaling from the visual photopigments (norpA(P41)). In cry(b) flies, light applied during the dark period failed to induce degradation of TIM both in MTs and in LNs, yet attenuated cycling of TIM was observed in both tissues in LD. This cycling was abolished in LNs, but persisted in MTs, of norpA(P41);cry(b) double mutants. Furthermore, the activity of the tim gene in the MTs of cry(b) flies, reported by luciferase, seemed stimulated by lights-on and suppressed by lights-off, suggesting that the absence of functional cryptochrome uncovered an additional light-sensitive pathway synchronizing the expression of TIM in this tissue. In constant darkness, cycling of TIM was abolished in MTs; however, it persisted in LNs of cry(b) flies. The authors conclude that cryptochrome is involved in TIM-mediated entrainment of both central LN and peripheral MT clocks. Cryptochrome is also an indispensable component of the endogenous clock mechanism in the examined peripheral tissue, but not in the brain. Thus, although neural and epithelial cells share the core clock mechanism, some clock components and light-entrainment pathways appear to have tissue-specific roles.  相似文献   
9.
von Besser  Hans  Schnabel  Petra  Wieland  Claudia  Fritz  Elke  Stanewsky  Ralf  Saumweber  Harald 《Chromosoma》1990,100(1):37-47
The DNA coding for the puff-specific protein Bj6 has been isolated by expression cloning. The gene is localized in 14C1,2 on the X chromosome and is expressed ubiquitously during embryonic development with prominent expression during the first 12 h of embryogenesis. cDNA and genomic clones have been sequenced and show a single open-reading frame of 2.1 kb length, coding for a Mr=77000 basic protein. In the aminoterminal half of the protein we detect stretches of repeated amino acids, centrally a region with homology to RNA-binding proteins containing the RNP 1 and RNP 2 consensus motif of RNA binding proteins, and the carboxyterminal part is rich in charged amino acids. The Bj6 protein is a product of the gene no-on transient A, a gene required for normal vision and courtship behaviour in Drosophila.W. Hennig  相似文献   
10.
Drosophila CRY is a deep brain circadian photoreceptor   总被引:10,自引:0,他引:10  
cry (cryptochrome) is an important clock gene, and recent data indicate that it encodes a critical circadian photoreceptor in Drosophila. A mutant allele, cry(b), inhibits circadian photoresponses. Restricting CRY expression to specific fly tissues shows that CRY expression is needed in a cell-autonomous fashion for oscillators present in different locations. CRY overexpression in brain pacemaker cells increases behavioral photosensitivity, and this restricted CRY expression also rescues all circadian defects of cry(b) behavior. As wild-type pacemaker neurons express CRY, the results indicate that they make a striking contribution to all aspects of behavioral circadian rhythms and are directly light responsive. These brain neurons therefore contain an identified deep brain photoreceptor, as well as the other circadian elements: a central pace-maker and a behavioral output system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号