首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2016年   1篇
  2012年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
The pleural membrane is modeled as a planar collection of interconnected randomly oriented line elements. By assuming that the line elements follow the strain field of a continuum, a strain-energy function is formulated. From the strain-energy function, an explicit stress-strain equation for large deformations is derived. In the linear approximation of the stress-strain equation the shear modulus and the area modulus of the membrane are respectively found to be 2.4 and 2.8 times the tension at the reference state. The stress-strain equation for large deformations is used to predict the displacement field around a circular hole in pleura. Good agreement is found between these predictions and measurements made on ablated pleura from dog lungs. From these theoretical and experimental results the conclusion is drawn that the pleura has a significant role in carrying shear forces and maintaining the lung's shape.  相似文献   
2.
We tested the hypothesis that mechanical tension in thecytoskeleton (CSK) is a major determinant of cell deformability. To confirm that tension was present in adherent endothelial cells, weeither cut or detached them from their basal surface by a microneedle. After cutting or detachment, the cells rapidly retracted. This retraction was prevented, however, if the CSK actin lattice was disrupted by cytochalasin D (Cyto D). These results confirmed thatthere was preexisting CSK tension in these cells and that the actinlattice was a primary stress-bearing component of the CSK. Second, todetermine the extent to which that preexisting CSK tension could altercell deformability, we developed a stretchable cell culture membranesystem to impose a rapid mechanical distension (and presumably a rapidincrease in CSK tension) on adherent endothelial cells. Altered celldeformability was quantitated as the shear stiffness measured bymagnetic twisting cytometry. When membrane strain increased 2.5 or 5%,the cell stiffness increased 15 and 30%, respectively. Disruption ofactin lattice with Cyto D abolished this stretch-induced increase instiffness, demonstrating that the increased stiffness depended on theintegrity of the actin CSK. Permeabilizing the cells with saponin andwashing away ATP and Ca2+ did notinhibit the stretch-induced stiffening of the cell. These resultssuggest that the stretch-induced stiffening was primarily due to thedirect mechanical changes in the forces distending the CSK but not toATP- or Ca2+-dependent processes.Taken together, these results suggest preexisting CSK tension is amajor determinant of cell deformability in adherent endothelial cells.

  相似文献   
3.
We measured chest wall "pathway impedances" (ratios of pressure changes to rates of volume displacement at the surface) with esophageal and gastric balloons and inductance plethysmographic belts around the rib cage and abdomen during forced volume oscillations (5% vital capacity, 0.5-4 Hz) at the mouth of five relaxed, seated subjects. Volume displacements of the total chest wall surface, measured by summing the rib cage and abdominal signals, approximated measurements using volume-displacement, body plethysmography over the entire frequency range. Resistance (R) and elastance (E) of the diaphragm-abdomen pathway were several times greater than those of the rib cage pathway, except at the highest frequencies where diaphragm-abdominal E was small. R and E of the diaphragm-abdomen pathway and of the rib cage pathway showed the same frequency dependencies as that of the total chest wall: R decreased markedly as frequency increased, and E (especially in the diaphragm-abdomen) decreased at the highest frequencies. These results suggest that the chest wall can be reasonably modeled, over the frequency range studied, as a system with two major pathways for displacement. Each pathway seems to exhibit behavior that reflects nonlinear, rate-independent dissipation as well as viscoelastic properties. Impedances of these pathways are useful indexes of changes in chest wall mechanical behavior in different situations.  相似文献   
4.
Parenchymal stability   总被引:1,自引:0,他引:1  
  相似文献   
5.
Recent lung microstructural models describing interactions between alveolar surface tension (gamma) and forces in structural elements of the alveolar duct predict that the component of lung recoil pressure due to gamma (P gamma) is proportional to gamma/V1/3, where V is the total lung volume. This relation is tested against experimental data obtained from pressure-volume measurements of excised rabbit lungs with different constant values of gamma. It is found that for values of gamma less than approximately 18 dyn/cm the data generally agree with the model predictions. With higher values of gamma, a mismatch between the data and predictions first occurs at low and high volumes and then spreads over the entire volume range. The mismatch at the lower volumes coincides with the appearance of nonuniformities of lung expansion. The nonuniformities are characterized by a coexistence of under- and overexpanded regions of the parenchyma referred to as a mixture of phases. These nonuniformities, as well as a pressure-volume curve with a shape similar to the shape of measured curves, are predicted from an analysis of lung stability. Results of this work indicate that if the lung expands uniformly, P gamma proportional to gamma/V1/3 is a good approximation over a wide range of volumes. The stability analysis indicates that the equilibrium configurations of the lung parenchyma when gamma is independent of interfacial area and elevated above normal values are nonuniform states of expansion, characterizable as a mixture of phases. This result confirms that a dependence of gamma on surface area is normally required to achieve stable, uniform states of lung expansion.  相似文献   
6.
Mechanical stretch plays an important role in regulating shape and orientation of the vascular endothelial cell. This morphological response to stretch is basic to angiogenesis, neovascularization, and vascular homeostasis, but mechanism remains unclear. To elucidate mechanisms, we used cell mapping rheometry to measure traction forces in primary human umbilical vein endothelial cells subjected to periodic uniaxial stretches. Onset of periodic stretch of 10% strain amplitude caused a fluidization response typified by attenuation of traction forces almost to zero. As periodic stretch continued, the prompt fluidization response was followed by a slow resolidification response typified by recovery of the traction forces, but now aligned along the axis perpendicular to the imposed stretch. Reorientation of the cell body lagged reorientation of the traction forces, however. Together, these observations demonstrate that cellular reorientation in response to periodic stretch is preceded by traction attenuation by means of cytoskeletal fluidization and subsequent traction recovery transverse to the stretch direction by means of cytoskeletal resolidification.  相似文献   
7.
Recently reported data from mechanical measurements of cultured airway smooth muscle cells show that stiffness of the cytoskeletal matrix is determined by the extent of static contractile stress borne by the cytoskeleton (Wang N, Toli?-N?rrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, and Stamenovi? D. Am J Physiol Cell Physiol 282, C606-C616, 2002). On the other hand, rheological measurements on these cells show that cytoskeletal stiffness changes with frequency of imposed mechanical loading according to a power law (Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas DF, and Fredberg JJ. Phys Rev Lett 87: 148102, 2001). In this study, we examine the possibility that these two empirical observations might be interrelated. We combine previously reported data for contractile stress of human airway smooth muscle cells with new data describing rheological properties of these cells and derive quantitative, mathematically tractable, and experimentally verifiable empirical relationships between contractile stress and indexes of cell rheology. These findings reveal an intriguing role of the contractile stress: although it maintains structural stability of the cell under applied mechanical loads, it may also regulate rheological properties of the cytoskeleton, which are essential for other cell functions.  相似文献   
8.
9.
The viscoelastic and dynamic nonlinear properties of guinea pig tracheal smooth muscle tissues were investigated by measuring the storage (G') and loss (G") moduli using pseudorandom small-amplitude length oscillations between 0.12 and 3.5 Hz superimposed on static strains of either 10 or 20% of initial length. The G" and G' spectra were interpreted using a linear viscoelastic model incorporating damping (G) and stiffness (H), respectively. Both G and H were elevated following an increase in strain from 10 to 20%. There was no change in harmonic distortion (K(d)), an index of dynamic nonlinearity, between 10 and 20% strains. Application of methacholine at 10% strain significantly increased G and H while it decreased K(d). Cytochalasin D, isoproterenol, and HA-1077, a Rho-kinase inhibitor, significantly decreased both G and H but increased K(d). Following cytochalasin D, G, H, and K(d) were all elevated when mean strain increased from 10 to 20%. There were no changes in hysteresivity, G/H, under any condition. We conclude that not all aspects of the viscoelastic properties of tracheal smooth muscle strips are similar to those previously observed in cultured cells. We attribute these differences to the contribution of the extracellular matrix. Additionally, using a network model, we show that the dynamic nonlinear behavior, which has not been observed in cell culture, is associated with the state of the contractile stress and may derive from active polymerization within the cytoskeleton.  相似文献   
10.
Alternative model of respiratory tissue viscoplasticity   总被引:3,自引:0,他引:3  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号