首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   33篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   9篇
  2016年   10篇
  2015年   8篇
  2014年   16篇
  2013年   16篇
  2012年   22篇
  2011年   16篇
  2010年   18篇
  2009年   8篇
  2008年   14篇
  2007年   10篇
  2006年   11篇
  2005年   11篇
  2004年   11篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1974年   1篇
  1970年   1篇
  1969年   2篇
  1955年   1篇
  1953年   2篇
  1951年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
1.
A puzzling population-genetic phenomenon widely reported in allozyme surveys of marine bivalves is the occurrence of heterozygote deficits relative to Hardy-Weinberg expectations. Possible explanations for this pattern are categorized with respect to whether the effects should be confined to protein-level assays or are genomically pervasive and expected to be registered in both protein- and DNA-level assays. Anonymous nuclear DNA markers from the American oyster were employed to reexamine the phenomenon. In assays based on the polymerase chain reaction (PCR), two DNA-level processes were encountered that can lead to artifactual genotypic scorings: (a) differential amplification of alleles at a target locus and (b) amplification from multiple paralogous loci. We describe symptoms of these complications and prescribe methods that should generally help to ameliorate them. When artifactual scorings at two anonymous DNA loci in the American oyster were corrected, Hardy-Weinberg deviations registered in preliminary population assays decreased to nonsignificant values. Implications of these findings for the heterozygote-deficit phenomenon in marine bivalves, and for the general development and use of PCR-based assays, are discussed.   相似文献   
2.
Curcumin has a plethora of biological properties, making this compound potentially effective in the treatment of several diseases, including cancer. However, curcumin clinical use is compromised by its poor pharmacokinetics, being crucial to find novel analogs with better pharmacokinetic and pharmacological properties. Here, we aimed to evaluate the stability, bioavailability and pharmacokinetic profiles of monocarbonyl analogs of curcumin. A small library of monocarbonyl analogs of curcumin 1a–q was synthesized. Lipophilicity and stability in physiological conditions were both assessed by HPLC-UV, while two different methods assessed the electrophilic character of each compound monitored by NMR and by UV-spectroscopy. The potential therapeutic effect of the analogs 1a–q was evaluated in human colon carcinoma cells and toxicity in immortalized hepatocytes. Our results showed that the curcumin analog 1e is a promising agent against colorectal cancer, with improved stability and efficacy/safety profile.  相似文献   
3.
4.
5.
Microsporogenesis in Zea mays, the meiotic reduction of diploid sporocytes to haploid microspores, proceeds through a well-defined developmental sequence. The ability to generate mutants that affect the process makes this an ideal system for elucidating the role of the cytoskeleton during plant development. We have used immunofluorescence microscopy to compare microtubule distribution in wild-type and mutant microsporocytes. During normal meiosis the distribution of microtubules follows a specific temporal and spatial pattern that reflects the polar nature of microspore formation. Perinuclear microtubule staining increases and the nucleus elongates in the future spindle axis during late prophase I. Metaphase I spindles with highly focused poles align along the long axis of the anther locule. Cytokinesis occurs perpendicular to the spindle axis. The second division axis shifts 90 degrees with respect to the first division plane, thereby yielding an isobilateral tetrad of microspores. Microtubule distribution patterns during meiosis suggest that a nuclear envelope-associated microtubule organizing center (MTOC) controls the organization of cytoplasmic microtubules and contributes to spindle formation. The meiotic mutant dv is defective in the transition from a prophase microtubule array to a metaphase spindle. Instead of converging to form focused poles, the metaphase spindle poles remain diffuse as in prometaphase. This defect correlates with several abnormalities in subsequent developmental events including the formation of multinucleate daughter cells, multiple microspindles during meiosis II, multiple phragmoplasts, polyads of microspores, and cytoplasmic microtubule foci. These results suggest that dv is a mutation that affects MTOC organization.  相似文献   
6.
7.
8.
Water hyacinth Eichhornia crassipes is considered the most damaging aquatic weed in the world. However, few studies have quantified the impact of this weed economically and ecologically, and even fewer studies have quantified the benefits of its control. This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year’s Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, medium and low. A conservative raw agriculture value of R 0.26 per m3 was used to calculate the benefits derived by the water saved. The present benefit and cost values were determined using 10% and 5% discount rates. The benefit/cost ratio at the low evapotranspiration rate was less than one, implying that biological control was not economically viable but, at the higher evapotranspiration rates, the return justified the costs of biological control. However, at the marginal value product of water, the inclusion of the costs of damage to infrastructure, or the adverse effects of water hyacinth on biodiversity, would justify the use of biological control, even at the low transpiration rate.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号