首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   7篇
  2022年   1篇
  2020年   2篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2010年   2篇
  2008年   10篇
  2007年   7篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有96条查询结果,搜索用时 31 毫秒
1.
We measured the response of HepG2 cells to the classic cytochrome (cyt.) P-450 inducers 3-methylcholanthrene (3-MC) and phenobarbital (PB), by evaluating oxidative and/or reductive metabolism of the nitroarenes, 1-NP and 1,6-dinitropyrene (1,6-DNP), in control and induced cells. In HepG2 cells, 3-MC induces ring-hydroxylation of 1-NP, whereas PB stimulates its nitroreduction. PB induces NADPH-cyt. c reductase, but does not affect other cytosolic and microsomal enzymes which contribute to 1-NP nitroreduction in these cells. However, PB-inducible nitroreductase activity seems to be associated primarily with cyt. P-450 isoenzymatic form(s), as indicated by the requirement for NADPH and the response to specific inhibitors such as alpha-naphthoflavone and CO.  相似文献   
2.
The effect of lincocin (a plastid protein synthesis inhibitor) treatment on the greening process of bean (Phaseolus vulgaris L.) leaves have been studied. In comparison with control leaves treated ones had a decreased rate of chloroplast development. They had a marked chlorophyll deficiency and a decreased chlorophyll a/b ratio. Some long and short wavelength forms of chlorophyll a were lacking as evidenced from the absorption spectra at 25°C and the fluorescence spectra at 77°K. The –14CO2 fixation was inhibited by 80–90% in treated leaves. The fluorescence induced by the measuring light was greater in the treated leaves than in the control ones, and the kinetics of the decline of the relative fluorescence intensity were also different. Electron microscopic studies showed macrogranum-like structures and incomplete membrane vesicles in the treated plastids. After longer treatment a destruction of membranes was observed. The results indicate some structural and functional membrane deficiencies and instability of the membranes.  相似文献   
3.
4.
5.
Platelets represent a target of reactive oxygen species produced under oxidative stress conditions. Controversial data on the effect of these species on platelet functions have been reported so far. In this study we evaluated the effect of a wide range of H(2)O(2) concentrations on platelet adhesion to immobilized fibrinogen and on pp72(syk) and pp125(FAK) tyrosine phosphorylation. Our results demonstrate that: (1) H(2)O(2) does not affect the adhesion of unstimulated or apyrase-treated platelets to immobilized fibrinogen; (2) H(2)O(2) does not affect pp72(syk) phosphorylation induced by platelet adhesion to fibrinogen-coated dishes; (3) H(2)O(2) reduces, in a dose-dependent fashion, pp125(FAK) phosphorylation of fibrinogen-adherent platelets; (4) concentrations of H(2)O(2) near to physiological values (10-12 microM) are able to strengthen the subthreshold activation of pp125(FAK) induced by epinephrine in apyrase-treated platelets; (5) H(2)O(2) doses higher than 0.1 mM inhibit ADP-induced platelet aggregation and dense granule secretion. The ability of H(2)O(2) to modulate pp125(FAK) phosphorylation suggests a role of this molecule in physiological hemostasis as well as in thrombus generation.  相似文献   
6.
7.
The final goal of this work is to achieve a selective detection of butanal by the realization of a simple, small-size and low cost experimental approach. To this end, a porcine odorant-binding protein was used in connection with surface plasmon resonance transduction in a plastic optical fiber tool for the selective detection of butanal by a competitive assay. This allows to reduce the cost and the size of the sensing device and it offers the possibility to design a “Lab-on-a-chip” platform. The obtained results showed that this system approach is able to selectively detect the presence of butanal in the concentration range from 20 μM to 1000 μM.  相似文献   
8.
The D-galactose/D-glucose-binding protein (GGBP) from E. coli serves as an initial component for both chemotaxis toward glucose and high-affinity active transport of the sugar. In this work, we have used phosphorescence spectroscopy to investigate the effects of glucose and calcium on the dynamics and stability of GGBP. We found that GGBP exhibits a phosphorescence spectrum composed of two energetically distinct 0,0-vibrational bands centered at 404.43 and 409.61 nm; the large energy separation between them indicates two classes of chromophores making distinct dipolar interactions with their surrounding. Interestingly, the high-energy spectral component (404.43 nm) is one of the bluest spectra reported to date in proteins. Considering the ground state dipole direction, low-energy configurations for the indole side chain in proteins leading to blue-shifted spectra can arise from negative charges in proximity to the imidazole-ring nitrogen and/or positive charges near C4-C5 of the benzene ring. Among the five tryptophan residues of GGBP, Trp-284, located at the N-terminal domain of the protein, and Trp-183, located in the protein hinge region, make strong attractive charge interactions with surrounding side chains. Regarding Trp-284, the indole ring nitrogen is in contact with the negative charge of the Asp-267, whereas Trp-183 is next to the Glu-149 residue. In the latter, the ground state energy is further lowered by the proximity of the Arg-158 to the negative end (near C6) of the indole dipole. Regarding the red spectral component (409.61 nm), it is more intense than the blue component, presumably because more residues contribute to it. lambda 0,0 is typical of environments that are weakly polar or characterized by charges positioned near 90 degrees from the ground state dipole direction (the case of W195 and W127). The binding of glucose modifies the phosphorescence lifetime values as well as the spectrum of GGBP, shifting the blue band 0.54 nm to the blue and the red band 1 nm to the red. Finally, the removal of the calcium from GGBP structure causes variations in lifetime values and spectral shifts similar to those induced by glucose binding to the native protein. Aided by a detailed inspection of the three-dimensional structure of GGBP, these results contribute to a better understanding of the structure/function relationship of this protein.  相似文献   
9.
The aim of this work was to study the conformational changes of the Escherichia coli glutamine-binding protein (GlnBP) induced by GdnHCl and the effect of the binding of glutamine (Gln) on these processes. To this end, GdnHCl-induced unfolding of GlnBP alone and its GlnBP-Gln complex was studied by protein intrinsic fluorescence, ANS emission fluorescence, and far- and near-UV circular dichroism spectroscopy. The obtained spectroscopic data were interpreted taking into the account the peculiarities of protein three-dimensional structure. In particular, the fact that formation of a complex of GlnBP and Gln, which essentially changes the global structure of protein, affects only insignificantly the microenvironments of tryptophan residues elucidates the similarity of the emission spectra of GlnBP and the GlnBP-Gln complex, and the existence of quenching groups near tyrosine residues and an effective nonradiative Tyr --> Trp and/or Tyr --> Tyr --> Trp energy transfer provide an explanation for the negligibly small contribution of tyrosine to the bulk fluorescence of the native protein and for its increase in protein unfolding. The use of the parametric presentation of fluorescence data showed that both GlnBP unfolding and GlnBP-Gln unfolding are three-step processes (N --> I(1) --> I(2) --> U), though in the case of the GlnBP-Gln complex these stages essentially overlap. Despite the complex character, GlnBP unfolding is completely reversible. The dramatic shift of the N --> I(1) process to higher GdnHCl concentrations for the GlnBP-Gln complex in comparison with GlnBP was shown.  相似文献   
10.
In this work, we used fluorescence spectroscopy, molecular dynamics simulation, and Fourier transform infrared spectroscopy for investigating the effect of trehalose binding and maltose binding on the structural properties and the physical parameters of the recombinant D-trehalose/D-maltose binding protein (TMBP) from the hyperthermophilic archaeon Thermococcus litoralis. The binding of the two sugars to TMBP was studied in the temperature range 20 degrees-100 degrees C. The results show that TMBP possesses remarkable temperature stability and its secondary structure does not melt up to 90 degrees C. Although both the secondary structure itself and the sequence of melting events were not significantly affected by the sugar binding, the protein assumes different conformations with different physical properties depending whether maltose or trehalose is bound to the protein. At low and moderate temperatures, TMBP possesses a structure that is highly compact both in the absence and in the presence of two sugars. At about 90 degrees C, the structure of the unliganded TMBP partially relaxes whereas both the TMBP/maltose and the TMBP/trehalose complexes remain in the compact state. In addition, Fourier transform infrared results show that the population of alpha-helices exposed to the solvent was smaller in the absence than in the presence of the two sugars. The spectroscopic results are supported by molecular dynamics simulations. Our data on dynamics and stability of TMBP can contribute to a better understanding of transport-related functions of TMBP and constitute ground for targeted modifications of this protein for potential biotechnological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号