首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2021年   1篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes.  相似文献   
2.
Structure and analog based analysis of 3D-QSAR, CoMFA and CoMSIA, along with different docking protocols were used to evaluate the structure activity relationship of 26 analogues of 1-aryl sulfamido-2-alkyl piperazines to model the activities of group I and II secreted phospholipases A2 (sPLA2s) and probe into the chemical space and nature of receptor — ligand interactions. The best CoMFA model yields cross-validated (q2) and conventional correlation coefficients (r2) of 0.703 and 0.962 respectively whereas CoMSIA model yields q2 and r2 values of 0.408 and 0.922 respectively, followed by docking analysis using FlexX and GOLD methodologies on the X-ray structure of human and bovine PLA2s. A comparative study was made to find out the differences in the active site residues of both PLA2s. The information enunciated from the analysis of CoMFA and CoMSIA maps and docking results were analyzed and employed in the design of 29 new ligands using molecules 4, 21, 22 from the initial set as templates. New ligands for group I and II secreted phospholipases A2 (sPLA2s) have been thus designed based on the 32 analogues of 1-aryl sulfamido-2-alkyl piperazine with a cursory note on its synthetic feasibility. Molecular modeling studies indicate that the newly designed ligands are expected to show high affinity and experimental efforts in this direction is highly rewarding.  相似文献   
3.
EcoP1I methyltransferase (M.EcoP1I) belongs to the type III restriction-modification system encoded by prophage P1 that infects Escherichia coli. Binding of M.EcoP1I to double-stranded DNA and single-stranded DNA has been characterized. Binding to both single- and double-stranded DNA could be competed out by unlabeled single-stranded DNA. Metal ions did not influence DNA binding. Interestingly, M.EcoP1I was able to methylate single-stranded DNA. Kinetic parameters were determined for single- and double-stranded DNA methylation. This feature of the enzyme probably functions in protecting the phage genome from restriction by type III restriction enzymes and thus could be considered as an anti-restriction system. This study describing in vitro methylation of single-stranded DNA by the type III methyltransferase EcoP1I allows understanding of the mechanism of action of these enzymes and also their role in the biology of single-stranded phages.  相似文献   
4.
The nucleoporin Nup124p is a host protein required for the nuclear import of both, retrotransposon Tf1-Gag as well as the retroviral HIV-1 Vpr in fission yeast. The human nucleoporin Nup153 and the Saccharomyces cerevisiae Nup1p were identified as orthologs of Nup124p. In this study, we show that all three nucleoporins share a large FG/FXFG-repeat domain and a C-terminal peptide sequence, GRKIxxxxxRRKx, that are absolutely essential for Tf1 retrotransposition. Though the FXFG domain was essential, the FXFG repeats themselves could be eliminated without loss of retrotransposon activity, suggesting the existence of a common element unrelated to FG/FXFG motifs. The Nup124p C-terminal peptide, GRKIAVPRSRRKR, was extremely sensitive to certain single amino acid changes within stretches of the basic residues. On the basis of our comparative study of Nup124p, Nup1p, and Nup153 domains, we have developed peptides that specifically knockdown retrotransposon activity by disengaging the Tf1-Gag from its host nuclear transport machinery without any harmful consequence to the host itself. Our results imply that those domains challenged a specific pathway affecting Tf1 transposition. Although full-length Nup1p or Nup153 does not complement Nup124p, the functionality of their conserved domains with reference to Tf1 activity suggests that these three proteins evolved from a common ancestor.  相似文献   
5.
Colon cancer is second leading cause of cancer-related deaths in Western countries. Diet and smoking, which contain aromatic and heterocyclic amines, are major risk factors for colon cancer. Colorectal cancers have a natural history of long latency and therefore provide ample opportunities for effective chemoprevention. 3,2'-Dimethyl-4-aminobiphenyl (DMABP) is an experimental aromatic amine that causes cancer in rat colon and serves as an experimental model for arylamine and heterocyclic amine mutagens derived from diet and smoking. In this study, we investigated the effects of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor on DMABP-induced DNA adduct formation in rat liver and colon. Male F-344 rats (5-week old) were provided free access to modified AIN-76A rat chow containing 0 (control), 500, 1000, or 1500 ppm celecoxib. Two weeks later, the rats received a subcutaneous injection of 100mg/kg DMABP in peanut oil. Two days after DMABP treatment, the rats were killed and DMABP-derived adducts were analyzed in colon and liver DNA by butanol extraction-mediated (32)P-postlabeling. Two major DNA adducts, identified as dG-C8-DMABP and dG-N(2)-DMABP, were detected in liver and colon of rats treated with DMABP. These DNA adducts were diminished approximately 35-40% with 500 ppm and 65-70% with 1,000 ppm celecoxib. In the colon, no further decline in DNA adducts was observed at 1500 ppm. The same DMABP-DNA adducts also were detected in the liver and were also diminished by celecoxib treatment. The reduction in DMABP-DNA adduct levels in celecoxib-treated animals provides further support for celecoxib as a chemopreventive agent for colorectal cancer.  相似文献   
6.
7.
Restriction-modification (R-M) enzymes are classified into type I, II, III, and IV, based on their recognition sequence, subunit composition, cleavage position, and cofactor requirements. While the role of S-Adenosyl-L-methionine (AdoMet) as the methyl group donor in the methylation reaction is undisputed, its requirement in DNA cleavage reaction has been subject to intense study. AdoMet is a prerequisite for the DNA cleavage by most type I enzymes known so far, with the exception of R.EcoR124I. A number of new type II restriction enzymes belonging to the type IIB and IIG family were found to show AdoMet dependence for their cleavage reaction. The type III enzymes have been found to require AdoMet for their restriction function. AdoMet functions as an allosteric effector of the DNA cleavage reaction and has been shown to bring about conformational changes in the protein upon binding.  相似文献   
8.

Background

Gliomas have been termed recurrent cancers due to their highly aggressive nature. Their tendency to infiltrate and metastasize has posed significant roadblocks to in attaining fool proof treatment solutions. An initiative to curb such a scenario was successfully demonstrated in vitro, utilizing a multi-conceptual gold nanoparticle based photo-thermal and drug combination therapy.

Methods

Gold nanoparticles (Au NPs) were synthesized with a highly environmentally benign process. The Au NPs were PEGylated and conjugated with folate and transferrin antibody to achieve a dual targeted nano-formulation directed towards gliomas. Curcin, a type 1 ribosome inactivating protein, was attached to the Au NPs as the drug candidate, and its multifarious toxic aspects analyzed in vitro. NIR photo-thermal properties of the Au nano-conjugates were studied to selectively ablate the glioma cancer colonies.

Results

Highly cyto-compatible, 10–15 nm Au NP conjugates were synthesized with pronounced specificity towards gliomas. Curcin was successfully conjugated to the Au NPs with pH responsive drug release. Prominent toxic aspects of curcin, such as ROS generation, mitochondrial and cytoskeletal destabilization were witnessed. Excellent photo-thermal ablation properties of gold nanoparticles were utilized to completely disrupt the cancer colonies with significant precision.

Conclusion

The multifunctional nanoconjugate projects its competence in imparting complete arrest of the future proliferation or migration of the cancer mass.

General significance

With multifunctionality the essence of nanomedicine in recent years, the present nanoconjugate highlights itself as a viable option for a multimodal treatment option for brain cancers and the like.  相似文献   
9.
Liposomes and polymers are widely used drug carriers for controlled release since they offer many advantages like increased treatment effectiveness, reduced toxicity and are of biodegradable nature. In this work, anticancer drug‐loaded PLGA‐lecithin‐PEG nanoparticles (NPs) were synthesized and were functionalized with AS1411 anti‐nucleolin aptamers for site‐specific targeting against tumor cells which over expresses nucleolin receptors. The particles were characterized by transmission electron microscope (TEM) and X‐ray photoelectron spectroscopy (XPS). The drug‐loading efficiency, encapsulation efficiency and in vitro drug release studies were conducted using UV spectroscopy. Cytotoxicity studies were carried out in two different cancer cell lines, MCF‐7 and GI‐1 cells and two different normal cells, L929 cells and HMEC cells. Confocal microscopy and flowcytometry confirmed the cellular uptake of particles and targeted drug delivery. The morphology analysis of the NPs proved that the particles were smooth and spherical in shape with a size ranging from 60 to 110 nm. Drug‐loading studies indicated that under the same drug loading, the aptamer‐targeted NPs show enhanced cancer killing effect compared to the corresponding non‐targeted NPs. In addition, the PLGA‐lecithin‐PEG NPs exhibited high encapsulation efficiency and superior sustained drug release than the drug loaded in plain PLGA NPs. The results confirmed that AS1411 aptamer‐PLGA‐lecithin‐PEG NPs are potential carrier candidates for differential targeted drug delivery. Biotechnol. Bioeng. 2012; 109: 2920–2931. © 2012 Wiley Periodicals, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号