首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2009年   2篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Removal of reproductive 'sink,' i.e., spikelets from wheat, after anthesis delays the rate of flag leaf senescence. Oxidative stress and the oxidative damage to proteins were studied in relation to nitrogen mobilization in wheat plants showing normal and delayed senescence. Wheat plants lacking a reproductive sink showed decreased oxidative stress, lower lipid peroxidation and maintained higher protein, oxidatively damaged proteins, and nitrogen levels as compared to plants with reproductive sink during monocarpic senescence. Oxidative damage to the proteins when not followed by high proteolytic activities led to a slower nitrogen mobilization in wheat plants lacking a reproductive sink. Thus, the influence of the reproductive sink was due to its ability to drive forward the nitrogen mobilization process through high ROS levels which mediated both damage to the proteins and influenced proteolytic activities.  相似文献   
2.
3.
The purpose of this study was to improve the aqueous solubility, dissolution, and pharmacodynamic properties of a BCS class II drug, ezetimibe (Eze) by preparing ternary cyclodextrin complex systems. We investigated the potential synergistic effect of two novel hydrophilic auxiliary substances, d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and l-ascorbic acid-2-glucoside (AA2G) on hydroxypropyl-β-cyclodextrin (HPBCD) solubilization of poorly water-soluble hypocholesterolemic drug, Eze. In solution state, the binary and ternary systems were analyzed by phase solubility studies and Job’s plot. The solid complexes prepared by freeze-drying were characterized by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM). The log P values, aqueous solubility, dissolution, and antihypercholesterolemic activity of all systems were studied. The analytical techniques confirmed the formation of inclusion complexes in the binary and ternary systems. HPBCD complexation significantly (p?<?0.05) reduced the log P and improved the solubility, dissolution, and hypocholesterolemic properties of Eze, and the addition of ternary component produced further significant improvement (p?<?0.05) even compared to binary system. The remarkable reduction in log P and enhancement in solubility, dissolution, and antihypercholesterolemic activity due to the addition of TPGS or AA2G may be attributed to enhanced wetting, dispersibility, and complete amorphization. The use of TPGS or AA2G as ternary hydrophilic auxiliary substances improved the HPBCD solubilization and antihypercholesterolemic activity of Eze.  相似文献   
4.
The ability of a GroEL-based bio-layer interferometry (BLI) assay to detect structurally altered and/or aggregated species of pharmaceutically relevant proteins is demonstrated. Assay development included optimizing biotinylated-GroEL immobilization to streptavidin biosensors, combined with biophysical and activity measurements showing native and biotinylated GroEL are both stable and active. First, acidic fibroblast growth factor (FGF-1) was incubated under conditions known to promote (40°C) and inhibit (heparin addition) molten globule formation. Heat exposed (40°C) FGF-1 exhibited binding to GroEL-biosensors, which was significantly diminished in the presence of heparin. Second, a polyclonal human IgG solution containing 6–8% non-native dimer showed an increase in higher molecular weight aggregates upon heating by size exclusion chromatography (SEC). The poly IgG solution displayed binding to GroEL-biosensors initially with progressively increased binding upon heating. Enriched preparations of the IgG dimers or monomers showed significant binding to GroEL-biosensors. Finally, a thermally treated IgG1 monoclonal antibody (mAb) solution also demonstrated increased GroEL-biosensor binding, but with different kinetics. The bound complexes could be partially to fully dissociated after ATP addition (i.e., specific GroEL binding) depending on the protein, environmental stress, and the assay’s experimental conditions. Transmission electron microscopy (TEM) images of GroEL-mAb complexes, released from the biosensor, also confirmed interaction of bound complexes at the GroEL binding site with heat-stressed mAb. Results indicate that the GroEL-biosensor-BLI method can detect conformationally altered and/or early aggregation states of proteins, and may potentially be useful as a rapid, stability-indicating biosensor assay for monitoring the structural integrity and physical stability of therapeutic protein candidates.  相似文献   
5.
Characterisation of proteases degrading ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO, EC: 4.1.1.39) was studied in the cowpea leaf during monocarpic senescence 3 and 9 d after flowering (DAF), representing early and mid pod fill. The stage at 3 DAF coincided with decrease in the metabolic parameters characterising senescence, i.e., contents of total soluble proteins, RuBPCO, and leaf nitrogen. At 9 DAF, there was a decline in total soluble proteins and an appearance of a 48 kDa cysteine protease. Characterisation of the proteases was done using specific inhibitors. Subcellular localisation at 3 DAF was studied by following the degradation of RuBPCO large subunit (LSU) in the vacuole lysates using immunoblot analyses. Cysteine proteases played a predominant role in the degradation of RuBPCO LSU at the crude extract level. At 9 DAF, expression of cysteine protease isoforms was monitored using polyclonal antibodies against papain and two polypeptides of molecular masses 48 and 35 kDa were observed in the vacuole lysates. We confirmed thus the predominance of cysteine proteases in the vacuoles during different stages of pod development in cowpea leaf.  相似文献   
6.
Rice ( Oryza sativa L.) cv. Tulsi is recommended for Eastern India, for upland ecological cultivation systems where a crop experiences natural cycles of water deficit and water sufficiency, depending upon the monsoon rains. In this experiment, this cultivar was subjected to three cycles of water stress of increasing stress intensity. Each stress cycle was terminated by rewatering the plants for a 48-h period. The level of stress was measured by quantification of H2O2. The response of antioxidant metabolites such as ascorbate and glutathione, and enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2) and guaiacol peroxidase (POX, EC 1.11.1.7) was analysed in terms of activity and isozyme pattern for each cycle of stress and recovery. The differential response of the antioxidant enzymes with increasing stress intensity followed by recovery, highlight the different role of each in the drought acclimation process of upland rice. SOD and POX activity in stressed plants was higher than the controls in all the three cycles. The second level of stress saw an increase in all the enzymes with APX and GR showing its maximum activity and there was a better management of H2O2 levels. There was an induction of a new CAT isoform in stressed plants in the third cycle of water stress. The co-ordinated defense helped the plants to recover in terms of growth on rewatering after stress cycles.  相似文献   
7.
Leaf senescence is a programmed cell death phenomenon and involves oxidative stress. Superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT EC 1.11.1.6) activities were studied in the flag leaf of Triticum aestivum cv. Kundan at different stages of grain development. Both SOD and CAT activities showed a decline during monocarpic senescence. Three SOD isozymes were observed in the cytosol, of which one isozyme was observed in the chloroplasts as well. Mitochondria showed the presence of three low abundant SOD isoforms. Inhibitor studies revealed the cytosolic and chloroplastic isoforms to be Cu/Zn SODs. In mitochondria however, two isozymes were MnSOD and one of them appeared to be FeSOD. These isoforms present in the mitochondria increased in activity as senescence progressed. Three isoforms of CAT were observed in peroxisomes which responded differentially during monocarpic senescence. The changes in the kind and pattern of the antioxidant enzymes supported the ordered sequence of events during leaf senescence. This is the first report showing an increase in mitochondrial FeSOD activity during leaf senescence.  相似文献   
8.
Drought-induced senescence and natural senescence was characterised in the cowpea leaf, with a focus on cysteine proteases. Soluble protein content and ribulose 1,5-bisphosphate carboxylase (Rubisco) content declined as senescence progressed. Endopeptidase activity with Rubisco as a physiological substrate exhibited significant increase at acidic (pH 4.8) than at neutral (pH 7.0) during drought induced senescence and declined during recovery. Natural senescence was associated with a several-fold increase in the endopeptidase activity at both the pHs. Cysteine proteases were analyzed using western blot with polyclonal antibodies raised against papain. Several polypeptides of molecular weights 57, 52, and 43 kDA were recognized by the antibodies, the levels of which showed an increase under water deficit conditions, followed by a decrease during recovery. Three polypeptides of molecular weights 69, 60, and 48 kDa appeared only during the water stress conditions, whereas, during natural senescence, only a single 48 kDa polypeptide with maximum intensity at 9 days after flowering was observed. The results suggests the possibility of distinguishing drought-induced and natural senescence.  相似文献   
9.
High temperature is a common constraint during anthesis and grain-filling stages of wheat leading to huge losses in yield. In order to understand the mechanism of heat tolerance during monocarpic senescence, the present study was carried out under field conditions by allowing two well characterized Triticum aestivum L. cultivars differing in heat tolerance, Hindi62 (heat-tolerant) and PBW343 (heat-susceptible), to suffer maximum heat stress under late sown conditions. Senescence was characterized by measuring photosynthesis related processes and endoproteolytic activity during non-stress environment (NSE) as well as heat-stress environment (HSE). There was a faster rate of senescence under HSE in both the genotypes. Hindi62, having pale yellow flag leaf with larger area, maintained cooler canopy under high temperatures than PBW343. The tolerance for high temperature in Hindi62 was clearly evident in terms of slower green-leaf area degradation, higher stomatal conductance, higher stability in maximum PSII efficiency, Rubisco activity and Rubisco content than PBW343. Both the genotypes exhibited lower endopeptidase activity under HSE as compared to NSE and this difference was more apparent in Hindi62. Serine proteases are the predominant proteases responsible for protein degradation under NSE as well as HSE. Flag leaf of both the genotypes exhibited high-molecular-mass endoproteases (78 kDa and 67 kDa) isoforms up to full grain maturity which were inhibited by specific serine protease inhibitor in both the environments. In conclusion, the heat-tolerant Hindi62 exhibited a slower rate of senescence than the heat-susceptible PBW343 during HSE, which may contribute towards heat stability.  相似文献   
10.
Dyschromatosis universalis hereditaria (DUH) is a rare genodermatosis reported initially and mainly in Japan. However, subsequent cases have been reported from other countries. We report a case of DUH in a south Indian woman with a positive family history with cosmetic disfigurement and severe psychological impairment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号