首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   3篇
  2018年   2篇
  2017年   4篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1998年   3篇
  1997年   1篇
  1981年   1篇
排序方式: 共有51条查询结果,搜索用时 468 毫秒
1.
The effect of neurotensin on submaximally-stimulated hepatobiliary and pancreatic secretion was studied in 6 healthy subjects. An intravenous infusion of neurotensin 1.4 ± 0.3 pmol/kg/min, designed to reproduce plasma neurotensin immunoreactivity levels within the physiological range, produced a significant increase in pancreatic bicarbonate output. Plasma concentrations of pancreatic polypeptide rose by 83 ± 16 pmol/l and were associated with a small reduction in trypsin, but no significant change in bilirubin outputs.  相似文献   
2.
The mammalian (mechanistic) target of rapamycin (mTOR) regulates critical immune processes that remain incompletely defined. Interest in mTOR inhibitor drugs is heightened by recent demonstrations that the mTOR inhibitor rapamycin extends lifespan and healthspan in mice. Rapamycin or related analogues (rapalogues) also mitigate age‐related debilities including increasing antigen‐specific immunity, improving vaccine responses in elderly humans, and treating cancers and autoimmunity, suggesting important new clinical applications. Nonetheless, immune toxicity concerns for long‐term mTOR inhibition, particularly immunosuppression, persist. Although mTOR is pivotal to fundamental, important immune pathways, little is reported on immune effects of mTOR inhibition in lifespan or healthspan extension, or with chronic mTOR inhibitor use. We comprehensively analyzed immune effects of rapamycin as used in lifespan extension studies. Gene expression profiling found many and novel changes in genes affecting differentiation, function, homeostasis, exhaustion, cell death, and inflammation in distinct T‐ and B‐lymphocyte and myeloid cell subpopulations. Immune functions relevant to aging and inflammation, and to cancer and infections, and innate lymphoid cell effects were validated in vitro and in vivo. Rapamycin markedly prolonged lifespan and healthspan in cancer‐ and infection‐prone mice supporting disease mitigation as a mechanism for mTOR suppression‐mediated longevity extension. It modestly altered gut metagenomes, and some metagenomic effects were linked to immune outcomes. Our data show novel mTOR inhibitor immune effects meriting further studies in relation to longevity and healthspan extension.  相似文献   
3.
Endothelial cells are normally non-motile and quiescent; however, endothelial cells will become permeable and invade and proliferate to form new blood vessels (angiogenesis) in response to wounding, cancer, diabetic retinopathy, age-related macular degeneration, or rheumatoid arthritis. p21-activated kinase (Pak), an effector for the Rho GTPases Rac and Cdc42, is required for angiogenesis and regulates endothelial cell permeability and motility. Although Pak is primarily activated by Rac and Cdc42, there are additional proteins that regulate Pak activity and localization, including three AGC protein kinase family members, Akt-1, PDK-1, and cAMP-dependent protein kinase. We describe phosphorylation and regulation of Pak localization by a fourth AGC kinase family member, cGMP-dependent protein kinase (PKG). Using in vitro mapping, a phosphospecific antibody, co-transfection assays, and untransfected bovine aortic endothelial cells we determined that PKG phosphorylates Pak at serine 21. Phosphorylation was accompanied by changes in proteins associated with Pak. The adaptor protein Nck was released, whereas a novel complex with vasodilator-stimulated phosphoprotein was stimulated. Furthermore Ser-21 phosphorylation of Pak appears to be important for regulation of cell morphology. In both human umbilical vein endothelial cells and HeLa cells, activation of PKG in the presence of Pak stimulated tail retraction and cell polarization. However, in cells expressing S21A mutant Pak1, PKG activation or treatment with a peptide that blocks Nck/Pak binding caused aberrant cell morphology, blocked cell retraction, and mislocalized Pak, producing uropod (tail-like) structures. These data suggest that PKG regulates Pak and that the interaction plays a role in tail retraction.  相似文献   
4.
Variation at four single nucleotide polymorphism (SNP) sites of the interleukin 1 (IL1) gene cluster was investigated among 280 unrelated individuals, representing 7 caste groups from the state of Karnataka, India, and one European American community of Boston, Massachusetts. Allele and haplotype frequencies, strength of linkage disequilibrium, and signatures of recombination varied considerably among populations. Variable community sizes and traditions of consanguinity may account for the observed variation.  相似文献   
5.
A 25-year-old previously asymptomatic pregnant woman at 36 weeks'' gestation was noticed to have repetitive monomorphic ventricular tachycardia. A dilated left ventricle with moderately reduced systolic function was found on echocardiographic examination. This is a very rare presentation of peripartum cardiomyopathy (PPCMP) presenting with repetitive monomorphic ventricular tachycardia.  相似文献   
6.

Introduction  

Axial spondyloarthropathy (SpA) is a group of inflammatory diseases, with ankylosing spondylitis as the prototype. SpA affects the axial skeleton, entheses, joints and, at times, the eyes. This study tested the hypothesis that SpA is characterized by a distinct pattern of gene expression in peripheral blood of affected individuals compared with healthy controls.  相似文献   
7.
Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features, such as increased basal metabolic rate, low serum lipid levels and increased blood pressure that have been attributed to adaptation to the extreme cold climate. In this study we introduce a dataset of 200 individuals from ten indigenous Siberian populations that were genotyped for 730,525 SNPs across the genome to identify genes and non-coding regions that have undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least three distinct population clusters could be identified among the Siberians, each of which showed a number of unique signals of selection. A region on chromosome 11 (chr11:66–69 Mb) contained the largest amount of clustering of significant signals and also the strongest signals in all the different selection tests performed. We present a list of candidate cold adaption genes that showed significant signals of positive selection with our strongest signals associated with genes involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific long-range haplotype signals from those introduced by admixture.  相似文献   
8.
A recently silenced, duplicate PgiC locus in Clarkia   总被引:1,自引:0,他引:1  
Previous electrophoretic analysis showed that 17 diploid species of the wildflower Clarkia (Onagraceae) have two cytosolic isozymes of phosphoglucose isomerase (PGIC; EC 5.3.1.9), whereas 15 other diploid species have a single PGIC. Molecular studies revealed that the two isozymes in the former species are encoded by duplicate genes, PgiC1 and PgiC2, whereas the single isozyme in the latter is always encoded by PgiC1. Phylogenetic analysis of the nucleotide sequences implied that PgiC2 was silenced four times independently in the genus. Here we describe a psi PgiC2 from C. mildrediae, a species in which only PgiC1 is expressed. The discovery of the psi PgiC2 is significant because it confirms a formal prediction of the phylogenetic analysis. The psi PgiC2 includes 5,039 nucleotides corresponding to 18 of the 23 exons of PgiC, as well as the intervening introns and 3' nontranslated region. The absence of an increase of nucleotide substitutions in its "exons" suggests that the gene was silenced recently. The present study appears to be the first to establish that a specific duplicate gene locus regularly expressed in a group of related plant species has been silenced in one of them. The multiple independent silencings of PgiC2 suggest that it remained functional but inessential in ancestral lineages. We discuss the possibility that PgiC2 may have been preserved in these lineages by selection against mutants causing defective PGIC1- PGIC2 heterodimers.   相似文献   
9.
10.

Background  

Coffee is an important crop and is crucial to the economy of many developing countries, generating around US70 billion per year. There are 115 species in the < i > Coffea < /i > genus, but only two, < i > C. arabica < /i > and < i > C. canephora < /i > , are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer ( < i > Hypotheneumus hampei < /i > ), is responsible for worldwide annual losses of around US70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an α-amylase inhibitor gene (α-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号