首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   8篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   8篇
  2014年   14篇
  2013年   10篇
  2012年   15篇
  2011年   21篇
  2010年   6篇
  2009年   11篇
  2008年   10篇
  2007年   20篇
  2006年   5篇
  2005年   8篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1996年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有206条查询结果,搜索用时 416 毫秒
1.
ObjectiveInterleukin-1 receptor antagonist (IL-1Ra) acts as an inhibitor of IL-1; which is one of the culprit cytokines in rheumatoid arthritis (RA). Although +2018 polymorphism of IL-1Ra has been implicated in the pathogenesis of RA, its importance remains poorly understood. Hence, the purpose of this study was to determine the clinical significance of interleukin-1 receptor antagonist (IL-1Ra) +2018 polymorphism in RA.MethodsPolymerase chain reaction (PCR) and sequencing were used to determine the genotypes of the IL-1Ra +2018 for 77 RA patients and 18 healthy controls. All RA patients were assessed for the disease activity score that includes 28 joints (DAS28) and radiographic disease damage based on Modified Sharp Score (MSS).ResultsThe frequency of the T/T and C/T genotypes did not differ significantly (p = 0.893) between the RA patients and the controls. The C/T genotype had significantly higher mean disease activity (DAS 28) and disease damage (MSS) scores with p values of 0.017 and 0.004, respectively. Additionally, the ESR (erythrocyte sedimentation rate), CRP (C-reactive protein), the number of swollen and tender joints were higher for the C/T individuals. On multivariate analysis the CRP, swollen joint count and MSS remained significant with the following p values i.e. 0.045, 0.046 and less than 0.05.ConclusionsC/T genotype of IL-1Ra +2018 prognosticates more aggressive disease in RA.  相似文献   
2.
A sequence comparison of the two membrane-associated (MA) domains of the cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance transporter (MDR), and -factor pheromone export system (STE6) proteins, each of which are believed to contain a total of 12 transmembrane (TM) segments, reveals significant amino acid homology and length conservation in the loop regions that connect individual TM sequences. Similar structural homology is observed between these proteins, hemolysin B (HLYB) and the major histocompatibility-linked peptide transporter, HAM1, the latter two which contain a single MA domain composed of six TM segments. In addition, there are specific sequences that are conserved within the TM segments of the five different membrane proteins. This observation suggests that the folding topologies of the MA domains of MDR, STE6, and CFTR in the plasma membrane are likely to be very similar. The sequence analysis also reveals that there are three characteristic motifs (a pair of aromatic residues, LTLXXXXXXP and GXXL) that are conserved in MDR, STE6, HLYB, HAM1, but not in CFTR. We propose that although CFTR may be evolutionarily related to these other membrane proteins, it belongs to a separate subclass.  相似文献   
3.
In the native folded conformation of a globular protein, amino acid residues distant along the polypeptide chain come together to form the compact structure. This spatial structure is such that most of the polar residues are on the surface and have contact with the solvent medium and the nonpolar residues buried in the interior which have contact with similar nonpolar side chains. This cooperativity and mutual interaction among the randomly aligned amino acid residues suggest that each type of residue may prefer to have a specific environment. To gain more insight into this aspect of residue-residue cooperativity, a detailed analysis of the preferred environment associated with each of the 20 different amino acid residues in a number of protein crystals has been carried out. The variation of nonpolar nature computed for different sizes of spheres shows that the spatial region between radii of 6 and 8 Å is more favored for hydrophobic interactions and indicates that the influence of each residue over the surrounding medium extends predominantly up to a distance of 8 Å. The analysis of the surrounding amino acid residues associated with each type of residue shows that there is a definite tendency for each type of residue to have association with specific residues. The variation in environment is found even within the polar group as well as in the nonpolar group of residues. The surrounding residues associated with isoleucine, leucine, and valine are purely nonpolar. Proline, a nonpolar residue, is often surrounded by polar residues. The surrounding nonpolar nature of the tryptophan and tyrosine residues implies that even a single polar atom in a nonpolar side chain is sufficient to reduce their hydrophobic environment. There exists a high degree of mutual residue-residue cooperativity between the pairs glutamic acid-lysine, methionine-arginine, asparagine-tryptophan, and glutamine-proline, and the mutual residue-residue noncooperativity is high for the pairs methionine-aspartic acid, cysteine-glutamic acid, histidine-glutamine, and leucine-asparagine. The formation of secondary and tertiary structures is discussed in terms of the preferred environment and mutual cooperativity among various types of amino acid residues.  相似文献   
4.
The binding sites of indole-based gelation inhibitors with sickle cell hemoglobin were investigated by two parallel theoretical approaches. A geometric approach originated by Kuntz and co-workers uses a spatial buildup scheme to locate potential binding regions, while a hybrid grid/geometric search method searches for specific indole ring binding pockets over the hemoglobin surface. The binding sites derived from these calculations were tested for their ability to accommodate indole rings by means of accessibility calculations with probes of various radii. These sites were further scanned for van der Waals' overlap and electrostatic interactions. A full 5BrTrp residue was built in each indole ring binding site, and its conformational energy of association with sickle hemoglobin was calculated at that site. Our theoretical results predict a total of 14 potential binding regions, including all of the sites observed from X-ray crystallography, and sites that are consistent with solution nuclear magnetic resonance studies.  相似文献   
5.
6.
Radiation therapy in the treatment of cancer is dose limited by radiation injury in normal tissues such as the intestine and the heart. To identify the mechanistic involvement of transforming growth factor-beta 1 (TGF-β1) in intestinal and cardiac radiation injury, we studied the influence of pharmacological induction of TGF-β1 with xaliproden (SR 57746A) in rat models of radiation enteropathy and radiation-induced heart disease (RIHD). Because it was uncertain to what extent TGF-β induction may enhance radiation injury in heart and intestine, animals were exposed to irradiation schedules that cause mild to moderate (acute) radiation injury. In the radiation enteropathy model, male Sprague-Dawley rats received local irradiation of a 4-cm loop of rat ileum with 7 once-daily fractions of 5.6 Gy, and intestinal injury was assessed at 2 weeks and 12 weeks after irradiation. In the RIHD model, male Sprague-Dawley rats received local heart irradiation with a single dose of 18 Gy and were followed for 6 months after irradiation. Rats were treated orally with xaliproden starting 3 days before irradiation until the end of the experiments. Treatment with xaliproden increased circulating TGF-β1 levels by 300% and significantly induced expression of TGF-β1 and TGF-β1 target genes in the irradiated intestine and heart. Various radiation-induced structural changes in the intestine at 2 and 12 weeks were significantly enhanced with TGF-β1 induction. Similarly, in the RIHD model induction of TGF-β1 augmented radiation-induced changes in cardiac function and myocardial fibrosis. These results lend further support for the direct involvement of TGF-β1 in biological mechanisms of radiation-induced adverse remodeling in the intestine and the heart.  相似文献   
7.
Radiation-induced heart disease (RIHD) is a long-term side effect of radiotherapy of intrathoracic, chest wall and breast tumors when radiation fields encompass all or part of the heart. Previous studies have shown that pentoxifylline (PTX) in combination with α-tocopherol reduced manifestations of RIHD in rat models of local heart irradiation. The relative contribution of PTX and α-tocopherol to these beneficial effects are not known. This study examined the effects of PTX alone or in combination with tocotrienols, forms of vitamin E with potential potent radiation mitigation properties. Rats received localized X-irradiation of the heart with an image-guided irradiation technique. At 3 months after irradiation rats received oral treatment with vehicle, PTX, or PTX in combination with a tocotrienol-enriched formulation. At 6 months after irradiation, PTX-treated rats showed arrhythmia in 5 out of 14 animals. PTX alone or in combination with tocotrienols did not alter cardiac radiation fibrosis, left ventricular protein expression of the endothelial markers von Willebrand factor and neuregulin-1, or phosphorylation of the signal mediators Akt, Erk1/2, or PKCα. On the other hand, tocotrienols reduced cardiac numbers of mast cells and macrophages, but enhanced the expression of tissue factor. While this new rat model of localized heart irradiation does not support the use of PTX alone, the effects of tocotrienols on chronic manifestations of RIHD deserve further investigation.  相似文献   
8.
A characteristic clinical feature of dengue virus infection is thrombocytopenia, though its underlying mechanism is not definitively determined. By adoptive transfer of human CD34+ fetal liver cells into immunodeficient mice, we have constructed humanized mice with significant levels of human platelets, monocytes/macrophages, and hepatocytes. Infection of these mice with both lab-adapted and clinical strains of dengue virus induces characteristic human hematological changes, including transient leukopenia and thrombocytopenia. We show that the specific depletion of human platelets is not mediated by antibodies in the periphery or reduced production of human thrombopoietin in the liver but reduction of human megakaryocytes and megakaryocyte progenitors in the bone marrow of the infected mice. These findings identify inhibition of platelet production in the bone marrow as a key mechanism underlying dengue-induced thrombocytopenia and suggest the utility of the improved humanized mouse model in studying dengue virus infection and pathogenesis in a human cell context.  相似文献   
9.

Objective

To investigate the effect of parthenolide on apoptosis and autophagy and to study the role of the PI3K/Akt signaling pathway in cervical cancer.

Results

Parthenolide inhibits HeLa cell viability in a dose dependent-manner and was confirmed by MTT assay. Parthenolide (6 µM) induces mitochondrial-mediated apoptosis and autophagy by activation of caspase-3, upregulation of Bax, Beclin-1, ATG5, ATG3 and down-regulation of Bcl-2 and mTOR. Parthenolide also inhibits PI3K and Akt expression through activation of PTEN expression. Moreover, parthenolide induces generation of reactive oxygen species that leads to the loss of mitochondrial membrane potential.

Conclusion

Parthenolide induces apoptosis and autophagy-mediated growth inhibition in HeLa cells by suppressing the PI3K/Akt signaling pathway and mitochondrial membrane depolarization and ROS generation. Parthenolide may be a potential therapeutic agent for the treatment of cervical cancer.
  相似文献   
10.
Characterizing the effects of force fields generated by cells on proliferation, migration and differentiation processes is challenging due to limited availability of nondestructive imaging modalities. Here, we integrate a new real‐time traction stress imaging modality, Hilbert phase dynamometry (HPD), with spatial light interference microscopy (SLIM) for simultaneous monitoring of cell growth during differentiation processes. HPD uses holographic principles to extract displacement fields from chemically patterned fluorescent grid on deformable substrates. This is converted into forces by solving an elasticity inverse problem. Since HPD uses the epi‐fluorescence channel of an inverted microscope, cellular behavior can be concurrently studied in transmission with SLIM. We studied the differentiation of mesenchymal stem cells (MSCs) and found that cells undergoing osteogenesis and adipogenesis exerted larger and more dynamic stresses than their precursors, with MSCs developing the smallest forces and growth rates. Thus, we develop a powerful means to study mechanotransduction during dynamic processes where the matrix provides context to guide cells toward a physiological or pathological outcome.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号