首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Ren N  He B  Stone D  Kirakodu S  Adler PN 《Genetics》2006,172(3):1643-1653
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular- and tissue-level morphogenesis. The developing hairs are filled with F-actin and microtubules and the activity of these cytoskeletons is important for hair morphogenesis. On the basis of mutant phenotypes several genes have been identified as playing a key role in stimulating hair formation. Mutations in shavenoid (sha) (also known as kojak) result in a delay in hair morphogenesis and in some cells forming no hair and others several small hairs. We report here the molecular identification and characterization of the sha gene and protein. sha encodes a large novel protein that has homologs in other insects, but not in more distantly related organisms. The Sha protein accumulated in growing hairs and bristles in a pattern that suggested that it could directly interact with the actin cytoskeleton. Consistent with this mechanism of action we found that Sha and actin co-immunopreciptated from wing disc cells. The morphogenesis of the hair involves temporal control by sha and spatial control by the genes of the frizzled planar polarity pathway. We found a strong genetic interaction between mutations in these genes consistent with their having a close but parallel functional relationship.  相似文献   
2.
Apoptotic processes are important for physiologic renewal of an intact epithelial barrier and contribute some antimicrobial resistance for bacteria and viruses, as well as anti-inflammatory effects that benefits the mucosa. The oral cavity presents a model of host-bacterial interactions at mucosal surfaces, in which a panoply of microorganisms colonizes various niches in the oral cavity and creates complex multispecies biofilms that challenge the gingival tissues. This report details gene expression in apoptotic pathways that occur in oral mucosal tissues across the lifespan, using a nonhuman primate model. Macaca mulatta primates from 2 to 23 years of age (n = 23) were used in a cross-sectional study to obtain clinical healthy gingival tissues specimens. Further, mRNA was prepared and evaluated using the Affymetrix Rhesus GeneChip and 88 apoptotic pathway genes were evaluated. The results identified significant positive correlations with age in 12 genes and negative correlations with an additional five genes. The gene effects were predicted to alter apoptosis receptor levels, extrinsic apoptotic pathways through caspases, cytokine effects on apoptotic events, Ca+2-induced death signaling, cell cycle checkpoints, and potential effects of survival factors. Both the positively and negatively correlated genes within the apoptotic pathways provided evidence that healthy tissues in aging animals exhibit decreased apoptotic potential compared to younger animals. The results suggested that decreased physiologic apoptotic process in the dynamic septic environment of the oral mucosal tissues could increase the risk of aging tissues to undergo destructive disease processes through dysregulated inflammatory responses to the oral microbial burden.  相似文献   
3.
Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.  相似文献   
4.
Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号