首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   7篇
  2021年   4篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   15篇
  2011年   7篇
  2010年   5篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   10篇
  2005年   3篇
  2004年   2篇
  2003年   8篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1987年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
Jojoba (Simmondsia chinensis, Link) is the only plant known that synthesizes liquid wax. The final step in liquid wax biosynthesis is catalyzed by an integral membrane enzyme, fatty acyl-coenzyme A (CoA):fatty alcohol acyltransferase, which transfers an acyl chain from acyl-CoA to a fatty alcohol to form the wax ester. To purify the acyltransferase, we have labeled the enzyme with a radioiodinated, photoreactive analog of acyl-CoA, 12-[N-(4-azidosalicyl)amino] dodecanoyl-CoA (ASD-CoA). This molecule acts as an inhibitor of acyltransferase activity in the dark and as an irreversible inhibitor upon exposure to ultraviolet light. Oleoyl-CoA protects enzymatic activity in a concentration-dependent manner. Photolysis of microsomal membranes with labeled ASD-CoA resulted in strong labeling of two polypeptides of 57 and 52 kD. Increasing concentrations of oleoyl-CoA reduced the labeling of the 57-kD polypeptide dramatically, whereas the labeling of the 52-kD polypeptide was much less responsive to oleoyl-CoA. Also, unlike the other polypeptide, the labeling of the 57-kD polypeptide was enhanced considerably when photolyzed in the presence of dodecanol. These results suggest that a 57-kD polypeptide from jojoba microsomes may be the acyl-CoA:fatty alcohol acyltransferase.  相似文献   
2.
The assignment of the paramagnetically shifted resonances of the Fe(II)-bleomycin complex in D2O has been accomplished using the transfer of saturation method. A number of additional resonances arising from labile NH protons which are shifted by the metal ion are observed in the 1H spectrum of the complex in H2O. The temperature dependence of the chemical shifts is consistent with the formation of an isolated 1:1 complex, but does not obey either the Curie Law or the Curie-Weiss Law. The magnitude of the shifts suggests that the valeric acid hydroxyl (or carbonyl) group, the α-amino group, the imidazole Nπ, the carbamoyl oxygen, the pyrimidine N1 and/or the secondary amino group may be coordinated to the iron(II).  相似文献   
3.
Prajosh  P.  Shabeer Ali  H.  Akhila  P.  Sreejith  K. 《Microbiology》2021,90(4):512-526
Microbiology - Screening of gut flora of the estuarine water fish ‘Chelon parsia’ for the presence of potential antibiotic producers resulted in finding a new strain Bacillus subtilis...  相似文献   
4.
5.
6.
7.
A novel 1,6-hexanediol diacrylate cross-linked resin was prepared that was subsequently functionalized by using chloromethyl methyl ether to afford a high-capacity resin. The resin exhibited good swelling and its application in the successful synthesis of a 13-residue peptide corresponding to the fragment of seminalplasmin has been illustrated. The resin was chemically inert at peptide synthetic conditions.  相似文献   
8.
In this study, we compared the immunogenicity and tumor-protective activity of anti-idiotypic antibodies mimicking a single tumor-associated epitope and tumor-associated antigen expressing multiple potentially immunogenic epitopes. We focused our study on the colorectal-carcinoma(CRC)-associated antigen GA733 (also known as CO17-1A/KS1-4/KSA/EpCAM). Monoclonal anti-idiotypic antibody (Ab2) BR3E4 was produced against murine anti-CRC mAb CO17-1A (Ab1) in rats. Full-length native GA733 protein was isolated from human tumor cells, and the extracellular domain protein (GA733-2E) was isolated from supernatants of recombinant baculovirus-infected insect cells by immunoafffinity chromatography. The immunomodulatory activity of the Ab2 was compared with that of the antigen, both in rabbits and in mice. Mice, like humans but not rabbits, express a GA733 antigen homologue on some of their normal tissues. Thus, these in vivo models allow the comparison of the immunogenicity of Ab2 and antigen in the presence (mice) and absence (rabbits) of normal tissue expression and immunological tolerance of the GA733 antigen homologue. In rabbits, aluminum-hydroxide(alum)-precipitated native GA733 antigen was superior to alum-precipitated Ab2 in inducing specific humoral immunity. In mice, alum-precipitated recombinant GA733-2E antigen, but not alum-precipitated Ab2, induced specific humoral immunity. However, when the Ab2 was administered to mice in Freund's complete adjuvant, specific humoral immune responses were elicited. Ab2 in complete Freund's adjuvant and GA733-2E in alum were compared for their capacity to induce antigen-specific cellular immunity in mice. Whereas lymphoproliferative responses were obtained with the recombinant antigen only, delayed-type hypersensitivity responses were obtained with both recombinant antigen and Ab2, although these responses were lower than after antigen immunization. The recombinant antigen in alum did not protect mice against challenge with antigen-positive syngeneic murine CRC cells. Similar studies with Ab2 BR3E4 mimicking the CO17-1A epitope were not possible because the tumor cells do not express this epitope after transfection with the human GA733-2 cDNA. However, similar studies with Ab2 mimicking the epitope defined by mAb GA733, which is expressed by the transfected tumor cells, indicated a lack of tumor-protective activity of this Ab2. In contrast, the full-length antigen expressed by recombinant adenovirus inhibited the growth of established tumors in mice. In conclusion, soluble antigen is a more potent modulator of humoral and cellular immune responses than Ab2, both administered in adjuvant. However, for induction of protective immunity, the immunogenicity of the antigen must be further enhanced, e.g., by expression of the antigen in a viral vector. Received: 27 December 1999 / Accepted: 27 January 2000  相似文献   
9.
10.
Protein tyrosine phosphatases dephosphorylate tyrosine residues of proteins, whereas, dual specificity phosphatases (DUSPs) are a subgroup of protein tyrosine phosphatases that dephosphorylate not only Tyr(P) residue, but also the Ser(P) and Thr(P) residues of proteins. The DUSPs are linked to the regulation of many cellular functions and signaling pathways. Though many cellular targets of DUSPs are known, the relationship between catalytic activity and substrate specificity is poorly defined. We investigated the interactions of peptide substrates with select DUSPs of four types: MAP kinases (DUSP1 and DUSP7), atypical (DUSP3, DUSP14, DUSP22 and DUSP27), viral (variola VH1), and Cdc25 (A-C). Phosphatase recognition sites were experimentally determined by measuring dephosphorylation of 6,218 microarrayed Tyr(P) peptides representing confirmed and theoretical phosphorylation motifs from the cellular proteome. A broad continuum of dephosphorylation was observed across the microarrayed peptide substrates for all phosphatases, suggesting a complex relationship between substrate sequence recognition and optimal activity. Further analysis of peptide dephosphorylation by hierarchical clustering indicated that DUSPs could be organized by substrate sequence motifs, and peptide-specificities by phylogenetic relationships among the catalytic domains. The most highly dephosphorylated peptides represented proteins from 29 cell-signaling pathways, greatly expanding the list of potential targets of DUSPs. These newly identified DUSP substrates will be important for examining structure-activity relationships with physiologically relevant targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号