首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  19篇
  2017年   1篇
  2015年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2002年   1篇
  2001年   1篇
  1988年   1篇
排序方式: 共有19条查询结果,搜索用时 0 毫秒
1.

Background

Though internationally recommended, provider initiated HIV testing and counseling (PITC) of persons suspected of tuberculosis (TB) is not a policy in India; HIV seroprevalence among TB suspects has never been reported. The current policy of PITC for diagnosed TB cases may limit opportunities of early HIV diagnosis and treatment. We determined HIV seroprevalence among persons suspected of TB and assessed feasibility and effectiveness of PITC implementation at this earlier stage in the TB diagnostic pathway.

Methods

All adults examined for diagnostic sputum microscopy (TB suspects) in Vizianagaram district (population 2.5 million), in November-December 2010, were offered voluntary HIV counseling and testing (VCT) and assessed for TB diagnosis.

Results

Of 2918 eligible TB suspects, 2465(85%) consented to VCT. Among these, 246(10%) were HIV-positive. Of the 246, 84(34%) were newly diagnosed as HIV (HIV status not known previously). To detect a new case of HIV infection, the number needed to screen (NNS) was 26 among ‘TB suspects’, comparable to that among ‘TB patients’. Among suspects aged 25–54 years, not diagnosed as TB, the NNS was 17.

Conclusion

The seroprevalence of HIV among ‘TB suspects’ was as high as that among ‘TB patients’. Implementation of PITC among TB suspects was feasible and effective, detecting a large number of new HIV cases with minimal additional workload on staff of HIV testing centre. HIV testing of TB suspects aged 25–54 years demonstrated higher yield for a given effort, and should be considered by policy makers at least in settings with high HIV prevalence.  相似文献   
2.
Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell “softness” is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.  相似文献   
3.
Caspase-6 is an apoptotic cysteine protease that also governs disease progression in Huntington's and Alzheimer's diseases. Caspase-6 is of great interest as a target for treatment of these neurodegenerative diseases; however, the molecular basis of caspase-6 function and regulation remains poorly understood. In the recently reported structure of caspase-6, the 60's and 130's helices at the base of the substrate-binding groove extend upward, in a conformation entirely different from that of any other caspase. Presently, the central question about caspase-6 structure and function is whether the extended conformation is the catalytically competent conformation or whether the extended helices must undergo a large conformational rearrangement in order to bind substrate. We have generated a series of caspase-6 cleavage variants, including a novel constitutively two-chain form, and determined crystal structures of caspase-6 with and without the intersubunit linker. This series allows evaluation of the role of the prodomain and intersubunit linker on caspase-6 structure and function before and after substrate binding. Caspase-6 is inherently more stable than closely related caspases. Cleaved caspase-6 with both the prodomain and the linker present is the most stable, indicating that these two regions act in concert to increase stability, but maintain the extended conformation in the unliganded state. Moreover, these data suggest that caspase-6 undergoes a significant conformational change upon substrate binding, adopting a structure that is more like canonical caspases.  相似文献   
4.
5.
6.
Microorganisms, particularly parasites, have developed sophisticated swimming mechanisms to cope with a varied range of environments. African Trypanosomes, causative agents of fatal illness in humans and animals, use an insect vector (the Tsetse fly) to infect mammals, involving many developmental changes in which cell motility is of prime importance. Our studies reveal that differences in cell body shape are correlated with a diverse range of cell behaviors contributing to the directional motion of the cell. Straighter cells swim more directionally while cells that exhibit little net displacement appear to be more bent. Initiation of cell division, beginning with the emergence of a second flagellum at the base, correlates to directional persistence. Cell trajectory and rapid body fluctuation correlation analysis uncovers two characteristic relaxation times: a short relaxation time due to strong body distortions in the range of 20 to 80 ms and a longer time associated with the persistence in average swimming direction in the order of 15 seconds. Different motility modes, possibly resulting from varying body stiffness, could be of consequence for host invasion during distinct infective stages.  相似文献   
7.
Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a microorganism with a complex swimming strategy.  相似文献   
8.
Human natural IFN-producing cells (IPC) circulate in the blood and cluster in chronically inflamed lymph nodes around high endothelial venules (HEV). Although L-selectin, CXCR4, and CCR7 are recognized as critical IPC homing mediators, the role of CXCR3 is unclear, since IPC do not respond to CXCR3 ligands in vitro. In this study, we show that migration of murine and human IPC to CXCR3 ligands in vitro requires engagement of CXCR4 by CXCL12. We also demonstrate that CXCL12 is present in human HEV in vivo. Moreover, after interaction with pathogenic stimuli, murine and human IPC secrete high levels of inflammatory chemokines. Thus, IPC migration into inflamed lymph nodes may be initially mediated by L-selectin, CXCL12, and CXCR3 ligands. Upon pathogen encounter, IPC positioning within the lymph node may be further directed by CCR7 and IPC secretion of inflammatory chemokines may attract other IPC, promoting cluster formation in lymph nodes.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号