首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   13篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   6篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   7篇
  1998年   2篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Sections of tendons from the base of the tail of rats were taken at eight time intervals from 18 days in utero until 244 days after birth and were examined in the electron microscope. For each time period, measurements were made of the relative area of fibroblasts, collagen and interstitial material, of the number of fibroblasts per unit area of tendon and of the average area of individual fibroblasts. The spatial arrangement of fibroblasts in the tendon sections was described quantitatively using the "nearest neighbor" method. Initially there was a rapid increase in the area of collagen accompanied by a decrease in the area occupied by fibroblasts but after 104 days of age these values changed very little. The numbers of fibroblasts per unit area decreased steadily from the embryo until 104 days whereas the average size of each cell increased to reach a maximum area at 40 days of age and then declined. At all time intervals cells were arranged in a regular, dispersed pattern across the tendon fascicles. Growth in width of the rat tail appears to involve the secretion of collagen and other intercellular material symmetrically around each fibroblast, so as to gradually separate the cells until a stage is reached at which cells are sufficiently far apart that there is little contact between adjacent cell processes. This may interfere with the integration of metabolic activity in the tissue. As a consequence, there is shrinkage of the cell bodies and a reduction in secretory activity so that, between 55 and 104 days of age, the tendon enters a period of terminal senescence.  相似文献   
2.
Previous studies have demonstrated that the intercellular spaces of the stratum corneum contain multilamellar lipid sheets with variable ultrastructure in addition to desmosomes or desmosomal remnants. The intercellular lamellae are thought to provide a permeability barrier whereas the desmosomes are responsible for cell-cell cohesion. In this study, transmission electron microscopy of RuO4-fixed tissue was used to compare the proportions of the intercellular spaces in epidermal and palatal stratum corneum occupied by desmosomes and by different patterns of lamellae. Desmosomes are more abundant in palatal than in epidermal stratum corneum (46.9 vs 15.0% length of intercellular space). In epidermis the most frequent lamellar arrangements involve 3 (23.5%) or 6 (24.2%) lucent bands with an alternating broad-narrow-broad pattern, whereas the most frequent lamellar arrangements in palatal tissue are 2 (17.2%) or 4 (10.5%) lucent bands of uniform width. Most of the nondesmosomal portion of the intercellular space in palatal stratum corneum was dilated and had elongated lamellae at the periphery and short disorganized lamellae and amorphous electron-dense material in the interior. It is concluded that the multilamellar lipid sheets are less extensive in palatal than in epidermal stratum corneum, which could explain the greater permeability of the palate.  相似文献   
3.
Summary Wound contraction results from the contractile activity of modified fibroblasts, termed myofibroblasts, which are present in the granulation tissue of the healing wound. This study examines the relative role of mechanical tension (stretching) and wound healing as events capable of stimulating the formation of myofibroblasts in mouse skin. The skin of hairless mice was subjected to mechanical stretching and to a small incisional wound either separately or in combination. Animals were killed at intervals between 1 and 6 days and the dermis examined with the electron microscope. Stretching alone produced little evidence of inflammation at any time interval but cells with the ultrastructural characteristics of myofibroblasts were present at 4 days and abundant at 6 days. Skin that had been both stretched and wounded showed a marked inflammatory response and also contained myofibroblasts, but they were less frequent than in the skin subjected to stretching alone. Very few myofibroblasts were evident in skin that had only been wounded. It is suggested that the effect of mechanical tension alone may initiate formation of myofibroblasts in a tissue.  相似文献   
4.
In order to investigate possible structural changes associated with the coupling mechanisms of the Ca-ATPase in sarcoplasmic reticulum membranes, we have utilized fluorescence resonance energy transfer between spectroscopic probes covalently bound to different domains of the ATPase. Using time-correlated single photon counting, we have directly measured the energy transfer efficiency between 5-[2-[(iodoacetyl)amino]ethyl]aminonaphthalene-1-sulfonic acid (IAEDANS), that is specifically bound to the B trypic fragment at cysteines 670 and 674 and acceptors covalently bound either near the nucleotide binding site, i.e. fluorescein 5-isothiocyanate at lysine 515, also on the B fragment, or maleimide-directed probes specifically located on the A1, tryptic fragment, i.e. 4-dimethylaminoazobenzene-4'-maleimide (DABmal) or fluorescein-5-maleimide (Fmal), probably at cysteines 344 and 364. All of these donor-acceptor pairs exhibit energy transfer both within and between Ca-ATPase molecules allowing us to investigate spatial relationships between the A1 and B domains and between different ATPase polypeptide chains. Differentiation between the intra- and intermolecular components of energy transfer was accomplished in two ways: 1) by comparing the transfer efficiencies in native membranes before and after detergent solubilization and 2) by reconstituting ATPase chains that have already been labeled with either the donor or acceptor chromophores. Using this approach, we find no significant change in the intramolecular transfer efficiency between any of these donor-acceptor pairs either upon binding of calcium to the high affinity sites or upon stabilization of the phosphoenzyme intermediate, indicating that there are no large structural changes within the B tryptic fragment or, alternatively, between the A1 and B fragments. With respect to intermolecular energy transfer, we observe no effect of calcium binding on the unliganded enzyme with either donor-acceptor pair. However, formation of the phosphoenzyme intermediate results in a measurable increase in the transfer efficiency between IAEDANS and DABmal (or Fmal); this increase is reversible upon phosphoenzyme destabilization by subsequent addition of calcium. There is no corresponding change in the intermolecular component of fluorescence resonance energy transfer between IAEDANS and fluorescein 5-isothiocyanate, indicating that the change in fluorescence resonance energy transfer probably occurs as a result of reorientation of associated ATPase polypeptide chains with respect to one another.  相似文献   
5.
Summary Mammalian epidermis and oral epithelia possess an intercellular permeability barrier which is located in the superficial region of the tissue. This study reports a staining reaction which appears to demonstrate a histological correlate of this functional property. Specimens of ear skin, palate, buccal and oesophageal mucosa and of cornea and bladder were obtained from adult rabbits and rats, bisected and either incubatedin vitro with 2.5% horseradish peroxidase as a tracer or fixed and processed for light microscopy and stained with a modification of Hart's elastin stain. Examination of specimens prepared by each procedure showed a complementary staining pattern in the intercellular spaces of the stratum corneum or in the superficial region of the non-keratinized tissue. In the epidermis and oral and oesophageal epithelia, the region which excluded the tracer stained with the modified elastin stain. In contrast, the corneal and bladder epithelia neither excluded the tracer nor showed intercellular staining. This relationship between staining of the intercellular space and the exclusion of tracer suggests that the intercellular material in the superficial region of epithelia may be chemically altered to form a barrier substance, possibly as the result of the discharge of the contents of the membrane-coating granules which are present in all the epithelia examined except the cornea and bladder.  相似文献   
6.
Qin Z  Squier TC 《Biophysical journal》2001,81(5):2908-2918
Spin-label electron paramagnetic resonance (EPR) provides optimal resolution of dynamic and conformational heterogeneity on the nanosecond time-scale and was used to assess the structure of the sequence between Met(76) and Ser(81) in vertebrate calmodulin (CaM). Previous fluorescence resonance energy transfer and anisotropy measurements indicate that the opposing domains of CaM are structurally coupled and the interconnecting central sequence adopts conformationally distinct structures in the apo-form and following calcium activation. In contrast, NMR data suggest that the opposing domains of CaM undergo independent rotational dynamics and that the sequence between Met(76) and Ser(81) in the central sequence functions as a flexible linker that connects two structurally independent domains. However, these latter measurements also resolve weak internuclear interactions that suggest the formation of transient helical structures that are stable on the nanosecond time-scale within the sequence between Met(76) and Asp(80) in apo-CaM (H. Kuboniwa, N. Tjandra, S. Grzekiek, H. Ren, C. B. Klee, and A. Bax, 1995, Nat. Struct. Biol. 2:768-776). This reported conformational heterogeneity was resolved using site-directed mutagenesis and spin-label EPR, which detects two component spectra for 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosulfonate spin labels (MTSSL) bound to CaM mutants T79C and S81C that include a motionally restricted component. In comparison to MTSSL bound within stable helical regions, the fractional contribution of the immobilized component at these positions is enhanced upon the addition of small amounts of the helicogenic solvent trifluoroethanol (TFE). These results suggest that the immobilized component reflects the formation of stable secondary structures. Similar spectral changes are observed upon calcium activation, suggesting a calcium-dependent stabilization of the secondary structure. No corresponding changes are observed in either the solvent accessibility to molecular oxygen or the maximal hyperfine splitting. In contrast, more complex spectral changes in the line-shape and maximal hyperfine splitting are observed for spin labels bound to sites that undergo tertiary contact interactions. These results suggest that spin labels at solvent-exposed positions within the central sequence are primarily sensitive to backbone fluctuations and that either TFE or calcium binding stabilizes the secondary structure of the sequence between Met(76) and Ser(81) and modulates the structural coupling between the opposing domains of CaM.  相似文献   
7.
All-optical histology using ultrashort laser pulses   总被引:10,自引:0,他引:10  
As a means to automate the three-dimensional histological analysis of brain tissue, we demonstrate the use of femtosecond laser pulses to iteratively cut and image fixed as well as fresh tissue. Cuts are accomplished with 1 to 10 microJ pulses to ablate tissue with micron precision. We show that the permeability, immunoreactivity, and optical clarity of the tissue is retained after pulsed laser cutting. Further, samples from transgenic mice that express fluorescent proteins retained their fluorescence to within microns of the cut surface. Imaging of exogenous or endogenous fluorescent labels down to 100 microm or more below the cut surface is accomplished with 0.1 to 1 nJ pulses and conventional two-photon laser scanning microscopy. In one example, labeled projection neurons within the full extent of a neocortical column were visualized with micron resolution. In a second example, the microvasculature within a block of neocortex was measured and reconstructed with micron resolution.  相似文献   
8.
The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today’s open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.  相似文献   
9.
Phospholamban (PLB) associates with the Ca2+-ATPase in sarcoplasmic reticulum (SR) membranes to permit the modulation of contraction in response to -adrenergic signaling. To understand how coordinated changes in the abundance and intracellular trafficking of PLB and the Ca2+-ATPase contribute to the maturation of functional muscle, we measured changes in abundance, location, and turnover of endogenous and tagged proteins in myoblasts and during their differentiation. We found that PLB is constitutively expressed in both myoblasts and differentiated myotubes, whereas abundance increases of the Ca2+-ATPase coincide with the formation of differentiated myotubes. We observed that PLB is primarily present in highly mobile vesicular structures outside the endoplasmic reticulum, irrespective of the expression of the Ca2+-ATPase, indicating that PLB targeting is regulated through vesicle trafficking. Moreover, using pulse-chase methods, we observed that in myoblasts, PLB is trafficked through directed transport through the Golgi to the plasma membrane before endosome-mediated internalization. The observed trafficking of PLB to the plasma membrane suggests an important role for PLB during muscle differentiation, which is distinct from its previously recognized role in the regulation of the Ca2+-ATPase. sarco(endo)plasmic reticulum calcium-adenosine triphosphatase; differentiation; C2C12 myocytes; vesicle trafficking  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号