首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   6篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   6篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1976年   1篇
排序方式: 共有47条查询结果,搜索用时 15 毫秒
1.
The distribution and stability of the cellular tumor antigen p53 were studied in baby rat kidney cells transformed by region E1 sequences of nononcogenic adenovirus (Ad) type 5 (Ad5) or oncogenic type 12 (Ad12). In transformed cells expressing the large E1B T antigen of Ad5, p53 was associated with this T antigen. The complexed proteins were concentrated in a cytoplasmic body, which has been shown to consist of a cluster of 8-nm filaments (A. Zantema et al., Virology 142:44-58, 1985). In transformed cells expressing the E1B region of Ad12, however, no association between the viral large T antigen and p53 was detectable. In the latter case, both proteins were found almost exclusively in the nucleus. The stability of p53 in both Ad5- and Ad12-transformed cells was increased relative to that in primary cells or cells immortalized by the E1A region only. Thus, the increased stability of p53 in Ad-transformed cells is not caused by association with a viral T antigen, but it correlates with expression of E1B and with morphological transformation.  相似文献   
2.

Background  

The integration of many aspects of protein/DNA structure analysis is an important requirement for software products in general area of structural bioinformatics. In fact, there are too few software packages on the internet which can be described as successful in this respect. We might say that what is still missing is publicly available, web based software for interactive analysis of the sequence/structure/function of proteins and their complexes with DNA and ligands. Some of existing software packages do have certain level of integration and do offer analysis of several structure related parameters, however not to the extent generally demanded by a user.  相似文献   
3.
H2S+ bacteria responsible for the degradation of sulfur-containing amino acids of fish muscle are currently little used to evaluate the microbiological pal quality of fish. Shewanella putrefaciens greatly predominates in this flora, and was therefore used to define a suitable culture method and medium. Inoculations by the Spiral surface method at 25C, with an incubation of 72h, gave the best counts on a medium containing two sources of sulfur (organic and inorganic) for H2S+ bacteria. The culture medium and the NaCl concentration were determinant in the evaluation of this flora. At present there is no standard medium which meets these requirements.  相似文献   
4.
A bacteriophage genome was forced to evolve a new system of regulation by replacing its RNA polymerase (RNAP) gene, a central component of the phage developmental pathway, with that of a relative. The experiment used the obligate lytic phage T7 and the RNAP gene of phage T3. T7 RNAP uses 17 phage promoters, which are responsible for all middle and late gene expression, DNA replication, and progeny maturation, but the enzyme has known physical contacts with only 2 other phage proteins. T3 RNAP was supplied in trans by the bacterial host to a T7 genome lacking its own RNAP gene and the phage population was continually propagated on naive bacteria throughout the adaptation. Evolution of the T3 RNAP gene was thereby prevented, and selection was for the evolution of regulatory signals throughout the phage genome. T3 RNAP transcribes from T7 promoters only at low levels, but a single mutation in the promoter confers high expression, providing a ready mechanism for reevolution of gene expression in this system. When selected for rapid growth, fitness of the engineered phage evolved from a low of 5 doublings/h to 33 doublings/h, close to the expected maximum of 37 doublings/h. However, the experiment was terminated before it could be determined accurately that fitness had reached an obvious plateau, and it is not known whether further adaptation could have resulted in complete recovery of fitness. More than 30 mutations were observed in the evolved genome, but changes were found in only 9 of the 16 promoters, and several coding changes occurred in genes with no known contacts with the RNAP. Surprisingly, the T7 genome adapted to T3 RNAP also maintained high fitness when using T7 RNAP, suggesting that the extreme incompatibility of T7 elements with T3 RNAP is not an invariant property of divergence in these expression systems.  相似文献   
5.
Optimal foraging theory explains diet restriction as an adaptation to best utilize an array of foods differing in quality, the poorest items not worth the lost opportunity of finding better ones. Although optimal foraging has traditionally been applied to animal behavior, the model is easily applied to viral host range, which is genetically determined. The usual perspective for bacteriophages (bacterial viruses) is that expanding host range is always advantageous if fitness on former hosts is not compromised. However, foraging theory identifies conditions favoring avoidance of poor hosts even if larger host ranges have no intrinsic costs. Bacteriophage T7 rapidly evolved to discriminate among different Escherichia coli strains when one host strain was engineered to kill infecting phages but the other remained productive. After modifying bacteria to yield more subtle fitness effects on T7, we tested qualitative predictions of optimal foraging theory by competing broad and narrow host range phages against each other. Consistent with the foraging model, diet restriction was favored when good hosts were common or there was a large difference in host quality. Contrary to the model, the direction of selection was affected by the density of poor hosts because being able to discriminate was costly.  相似文献   
6.
A series of substituted biphenyl ethylene ether compounds has been designed to target the gp41 N-trimer in order to inhibit formation of the six-helical bundle that represents the end state of gp41-mediated viral fusion. A size exclusion HPLC based helical bundle formation (HBF) assay was developed to evaluate in vitro inhibitory affinity of the inhibitors. The most potent compound 1 had an IC50 of 31 μM. The binding of compound 1 to the proposed hydrophobic pocket of gp41 was further validated by site-directed peptide mutagenesis experiments.  相似文献   
7.
A collection of 54 clinical and agricultural isolates of Burkholderia cenocepacia was analyzed for genetic relatedness by using multilocus sequence typing (MLST), pathogenicity by using onion and nematode infection models, antifungal activity, and the distribution of three marker genes associated with virulence. The majority of clinical isolates were obtained from cystic fibrosis (CF) patients in Michigan, and the agricultural isolates were predominantly from Michigan onion fields. MLST analysis resolved 23 distinct sequence types (STs), 11 of which were novel. Twenty-six of 27 clinical isolates from Michigan were genotyped as ST-40, previously identified as the Midwest B. cenocepacia lineage. In contrast, the 12 agricultural isolates represented eight STs, including ST-122, that were identical to clinical isolates of the PHDC lineage. In general, pathogenicity to onions and the presence of the pehA endopolygalacturonase gene were detected only in one cluster of related strains consisting of agricultural isolates and the PHDC lineage. Surprisingly, these strains were highly pathogenic in the nematode Caenorhabditis elegans infection model, killing nematodes faster than the CF pathogen Pseudomonas aeruginosa PA14 on slow-kill medium. The other strains displayed a wide range of pathogenicity to C. elegans, notably the Midwest clonal lineage which displayed high, moderate, and low virulence. Most strains displayed moderate antifungal activity, although strains with high and low activities were also detected. We conclude that pathogenicity to multiple hosts may be a key factor contributing to the potential of B. cenocepacia to opportunistically infect humans both by increasing the prevalence of the organism in the environment, thereby increasing exposure to vulnerable hosts, and by the selection of virulence factors that function in multiple hosts.The betaproteobacterium Burkholderia cenocepacia, 1 of now 17 classified species belonging to the Burkholderia cepacia complex (BCC), is ubiquitous and extremely versatile in its metabolic capabilities and interactions with other organisms (38, 40, 57, 58). Strains of B. cenocepacia are pathogens of onion and banana plants, opportunistic pathogens of humans, symbionts of numerous plant rhizospheres, contaminants of pharmaceutical and industrial products, and inhabitants of soil and surface waters (14, 29, 33, 34, 37, 45). Originally described as a pathogen of onions (8), organisms of the BCC emerged in the past 3 decades as serious human pathogens, capable of causing devastating chronic lung infections in persons with cystic fibrosis (CF) or chronic granulomatous disease (21, 24, 28). Infections due to BCC are a serious concern to CF patients due to their inherent antibiotic resistance and high potential for patient-to-patient transmission (23). Although 16 of the BCC species have been recovered from respiratory secretions of CF patients in many countries (46, 58), B. cenocepacia has been the most common species isolated in North America, detected in 50% of 606, 83% of 447, and 45.6% of 1,218 patients in recent studies (35, 46, 52).The epidemiology of infectious disease caused by B. cenocepacia appears to involve patient-to-patient spread of genetically distinct lineages. B. cenocepacia lineages, such as ET12, Midwest, and PHDC, have been identified from large numbers of individuals in disease outbreaks in North America and Europe (11, 32, 54). A recently developed multilocus sequence typing (MLST) scheme has been shown to be a reliable epidemiologic tool for differentiating between the five subgroups (IIIA to IIIE) of B. cenocepacia, and strains representing three of these subgroups (IIIA, IIIB, and IIID) have been recovered from CF patients (2). Outside of the patient-to-patient transmission of clonal lineages, the mode of acquisition of strains causing sporadic cases of B. cenocepacia in CF patients remains unclear, although environmental sources are a logical reservoir for infection. Previously, an isolate of B. cenocepacia indistinguishable from the PHDC epidemic clonal lineage by using standard typing methods (e.g., repetitive-sequence-based PCR, randomly amplified polymorphic DNA, pulsed-field gel electrophoresis) was detected in an agricultural soil sample (34). Similarly, three distinct MLST sequence types containing both clinical and environmental (plant and soil) B. cenocepacia isolates were identified (1). These findings suggest that natural populations of B. cenocepacia in soil or associated with plants are a potential reservoir for the emergence of new human pathogenic lineages.Experimental models for the study of virulence potential and traits of B. cenocepacia include mouse and rat models with genetic defects allowing chronic lung infections to be established (e.g., see reference 48). Nematode (Caenorhabditis elegans), alfalfa (Medicago sativa), and onion (Allium cepa) models have also been routinely utilized for the identification of virulence factors (5, 29, 31). C. elegans has been extensively used to study the pathogenesis and virulence factors of a wide variety of bacterial and fungal pathogens (9, 15, 42, 51, 56). In several pathogens, including Pseudomonas (56) and Burkholderia (20), putative virulence factors important for the pathogenesis in mammalian systems (15, 51) have been identified using the C. elegans model. The C. elegans model might be limited in the detection of host-specific virulence factors; however, several attributes, such as small size and rapid development, make it an excellent whole animal model for pathogenesis research (16, 51).The evidence that individual strains of B. cenocepacia can be pathogenic to both plants and humans and are prevalent in various environmental niches has provoked particular interest in elucidating the clinical pathogenic potential of environmental isolates. The basis of this study was to examine whether genetically related B. cenocepacia strains exhibit shared characteristics that contribute to their pathogenicity in multiple hosts and to examine the potential for circulating environmental isolates to emerge as new clinical pathogens. Here, we tested the degree of virulence in animal (nematode) and plant (onion) infection models, the production of antifungal activity, and the genetic relatedness of clinical and environmental B. cenocepacia subgroup IIIB strains predominantly isolated from Michigan.  相似文献   
8.
9.
To study pigmentation, we have reconstructed an epidermis ex vivo with keratinocytes and melanocytes. Keratinocytes and melanocytes were grown first in primary cocultures and separately in secondary cultures, then seeded on a dead deepidermized dermis (Pruniéras type) at a 1:20 melanocyte/keratinocyte ratio. Reconstructed epidermis were grown in a special medium enriched with calcium and fetal bovine serum lifted for 15 days at the air-liquid interface. Using histology, immunohistochemistry and electron microscopy we have shown an excellent level of differentiation of the reconstructed epidermis and a physiologic distribution of dendritic melanocytes in the basal layer capable of melanosome transfer to keratinocytes. UVB irradiation 0.15 J/cm2× 5 consecutive days increased melanocyte numbers and stimulated pigmentation as evidenced macroscopically and microscopically and at the biochemical level. Following UVB irradiation melanosome transfer was markedly increased and isolated or clumps of melanosomes were seen in the basal layers as well as in the stratum corneum. This model allows the study of the physiology of pigmentation ex vivo.  相似文献   
10.
To understand the contribution of epidermal melanocytes in the proteolytic potential of human skin, we have studied melanocytes grown in a low-serum medium deprived of phorbol esters, cholera toxin, and other non-physiological supplements. We focused on the plasminogen activation system and certain matrix metalloproteinases (gelatinases). Supposing that the proteolytic activity of cells can influence binding to collagen matrix and its reorganization, we have analyzed these parameters as well. We found that human melanocytes secreted tissue-type plasminogen activator and utilised it to generate cell-bound plasmin. No urokinase-type plasminogen activator was detected in the cultures but its receptor was found in cell extracts. Both the 72 kDa and 92 kDa gelatinases were secreted by the cells and in equal amounts. In addition, melanocytes secreted the wide-spectrum proteinase inhibitor alpha-2-macroglobulin. Melanocytes cast into collagen matrices retained a rounded morphology, did not extend processes, and were unable to contract collagen lattices. As a control, these parameters were investigated in parallel in cultures of human keratinocytes, dermal fibroblasts, and two melanoma cell lines. The obtained characteristics suggest that normal human melanocytes are proteolytically active cells. This function may pertain to skin physiology and pathophysiology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号