首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
  2021年   1篇
  2018年   1篇
  2015年   2篇
  2014年   4篇
  2012年   3篇
  2010年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   4篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
Gibberellins (GAs) A17, A19, A20, A29, A44, 2OH-GA44 (tentative) and GA29-catabolite were identified in 21-day-old seeds of Pisum sativum cv. Alaska (tall). These GAs are qualitatively similar to those in the dwarf cultivar Progress No. 9 with the exception of GA19 which does not accumulate in Progress seeds. There was no evidence for the presence of 3-hydroxylated GAs in 21 day-old Alaska seeds. Dark-grown shoots of the cultivar Alaska contein GA1, GA8, GA20, GA29, GA8-catabolite and GA29-catabolite. Dark-grown shoots of the cultivar Progress No.9 contain GA8, GA20, GA29 and GA29-catabolite, and the presence of GA1 was strongly indicated. Quantitation using GAs labelled with stable isotope showed the level of GA1 in dark-grown shoots of the two cultivars to be almost identical, whilst the levels of GA20, GA29 and GA29-catabolite were significantly lower in Alaska than in Progress No. 9. The levels of these GAs in dark-grown shoots were 102- to 103-fold less than the levels in developing seeds. The 2-epimer of GA29 is present in dark-grown-shoot extracts of both cultivars and is not thought to be an artefact.Abbreviations cv cultivar - GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatographymass spectrometry - HPLC high-pressure liquid chromatography - KRI Kovats retention index - MeTMSi methyl ester trimethylsilyl ether  相似文献   
2.
Dark-grown seedlings of the lip1 (light independent photomorphogenesis) mutant of Pisum sativum L. display many features of de-etiolated growth and are similar in many respects to wild-type (WT) seedlings grown in the light. The involvement of gibberellins (GAs) with the mutant phenotype was examined by applying GA1 and GA20 to the mutant and WT, and by quantifying endogenous GA1, GA8, GA19, GA20, and GA29 levels in the two genotypes. These experiments were conducted in both the light and the dark. In neither environment could GA application restore elongation in the mutant to that in GA-treated WT plants. Quantification of GAs provided further evidence that the mutant phenotype is not attributable to a deficiency in endogenous GA1. However, dark-grown lip1 seedlings contained lower levels of GA19 and higher levels of GA20 than dark-grown WT plants, whereas in the light, the effect of the mutation on the ratio of GA19 to GA20 was reversed. Thus, there appears to be a complex interaction between the lip1 mutation, the light regime, and the step GA19 to GA20.  相似文献   
3.
Gibberellins A1, A4, A9, A12-aldehyde, A20 and A51, each labelled with both a radioactive and stable isotope were fed to immature barley grain by injection into the endosperm. After 7 d, extensive metabolism of all substrates had occurred, and metabolites were identified by combined capillary gas chromatography-mass spectrometry. A proposed scheme of gibberellin metabolism in immature barley grain is presented.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography  相似文献   
4.
Seed maturation of Pisum sativum cv. Progress No. 9 proceeds more slowly in winter than in summer even when the parent plants are grown in greenhouse conditions with light-and heat-supplementation. For parent plants grown under summer and winter conditions the metabolism of [3H]GA9 in cultured seeds is qualitatively different in seeds of equivalent age and qualitatively the same in seeds of equivalent weight. 13-Hydroxylation of [3H]GA9[3H]GA20 is restricted to early stages of seed development. 2-Hydroxylation of [3H]GA92-OH-[3H]GA9 has only been observed at a stage of development after endogenous GA9 has accumulated. 2-OH-GA9 has been shown to be endogenous to pea and is named GA51. H2-GA31 and its conjugate have not been shown to be present in pea and may be induced metabolites of [3H]GA9. The metabolism of GA20GA29 is used to illustrate a technique of feeding [2H][3H]GAs in order to distinguish a metabolite from the same endogenous compound. The in vitro conversion of [3H]GA20[3H]GA29, and the virtual non-metabolism of [3H]GA29 have been confirmed for seeds in intact fruits. These results are discussed in relation to the apparent absence of conjugated GAs in mature pea seeds.Abbreviations GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatography-mass spectrometry - GC-RC combined gas chromatography-radio counting - Me methyl ester - RT etention time - SICM selected ion current monitoring - TLC thin layer chromatography - TMS trimethyl silyl ether The author is née Frydman  相似文献   
5.
6.
7.
Future directions in plant hormone research are discussed, with particular reference to the regulation of hormone biosynthesis, hormone perception, and signal transduction.  相似文献   
8.

Background  

Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken.  相似文献   
9.
The plant growth retardant, N,N,N-trimethyl-1-methyl-(2′,6′,6′-trimethylcyclohex-2′-en-1′-yl)prop-2-enylammonium iodide, is shown to block gibberellin biosynthesis in Gibberella fujikuroi between mevalonate and ent-kaur-16-ene, probably by inhibiting ent-kaur-16-ene synthetase A-activity. In the presence of the plant growth retardant, cultures of the fungus incorporate (26.5%) added ent-[14C]-kaur-16-ene into gibberellin A3. Under the same conditions kaur-16-ene, 13β-kaur-16-ene, and ent-kaur-15-ene are not metabolised to gibberellin analogues.  相似文献   
10.
Gibberellins A1, A8, A20 and A29 were identified by capillary gas chromatography-mass spectrometry in the pods and seeds from 5-d-old pollinated ovaries of pea (Pisum sativum cv. Alaska). These gibberellins were also identified in 4-d-old non-developing, parthenocarpic and pollinated ovaries. The level of gibberellin A1 within these ovary types was correlated with pod size. Gibberellin A1, applied to emasculated ovaries cultured in vitro, was three to five times more active than gibberellin A20. Using pollinated ovary explants cultured in vitro, the effects of inhibitors of gibberellin biosynthesis on pod growth and seed development were examined. The inhibitors retarded pod growth during the first 7 d after anthesis, and this inhibition was reversed by simultaneous application of gibberellin A3. In contrast, the inhibitors, when supplied to 4-d-old pollinated ovaries for 16 d, had little effect on seed fresh weight although they reduced the levels of endogenous gibberellins A20 and A29 in the enlarging seeds to almost zero. Paclobutrazol, which was one of the inhibitors used, is xylem-mobile and it efficiently reduced the level of seed gibberellins without being taken up into the seed. In intact fruits the pod may therefore be a source of precursors for gibberellin biosynthesis in the seed. Overall, the results indicate that gibberellin A1, present in parthenocarpic and pollinated fruits early in development, regulates pod growth. In contrast the high levels of gibberellins A20 and A29, which accumulate during seed enlargement, appear to be unnecessary for normal seed development or for subsequent germination.Abbreviations GA(a) gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - PFK perfluorokerosene - PVP polyvinylpyrrolidone  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号