首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2006年   2篇
  2001年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Currently, ocean acidification is occurring at a faster rate than at any time in the last 300 million years, posing an ecological challenge to marine organisms globally. There is a critical need to understand the effects of acidification on the vulnerable larval stages of marine fishes, as there is potential for large ecological and economic impacts on fish populations and the human economies that rely on them. We expand upon the narrow taxonomic scope found in the literature today, which overlooks many life history characteristics of harvested species, by reporting on the larvae of Rachycentron canadum (cobia), a large, highly mobile, pelagic‐spawning, widely distributed species with a life history and fishery value contrasting other species studied to date. We raised larval cobia through the first 3 weeks of ontogeny under conditions of predicted future ocean acidification to determine effects on somatic growth, development, otolith formation, swimming ability, and swimming activity. Cobia exhibited resistance to treatment effects on growth, development, swimming ability, and swimming activity at 800 and 2100 μatm pCO2. However, these scenarios resulted in a significant increase in otolith size (up to 25% larger area) at the lowest pCO2 levels reported to date, as well as the first report of significantly wider daily otolith growth increments. When raised under more extreme scenarios of 3500 and 5400 μatm pCO2, cobia exhibited significantly reduced size‐at‐age (up to 25% smaller) and a 2–3 days developmental delay. The robust nature of cobia may be due to the naturally variable environmental conditions this species currently encounters throughout ontogeny in coastal environments, which may lead to an increased acclimatization ability even during long‐term exposure to stressors.  相似文献   
2.
As animals with complex life cycles metamorphose from one stage to the next, carry-over effects from earlier stages can affect future mortality. To examine the relationship between early life history traits and survival, seven monthly cohorts of newly-settled bluehead wrasse Thalassoma bifasciatum were collected immediately after settlement and over sequential 3-day periods. Otolith analysis was used to quantify mean larval and juvenile growth rates, pelagic larval duration (PLD), and settlement size and condition of different age classes to identify the traits most important for survival. Overall, survivors tended to have shorter PLDs, to settle at smaller sizes and higher condition levels, and to exhibit faster early juvenile growth. Water temperature contributed to among-cohort variability in traits as warmer water led to faster larval and juvenile growth and shorter PLDs. Trait-specific fitness functions demonstrated that temperature can influence fitness by changing the nature of selection on each trait. Estimates of selection intensity revealed that settlement condition contributed the most to variation in fitness across cohorts, followed by juvenile growth. Frequent loss of low settlement condition individuals and occasional loss of the very highest condition fish suggest that particularly high settlement condition during the warmest temperatures may be detrimental. Not only does the quality of settlers vary over time, but selective loss of individuals with particular phenotypic traits is not pervasive and can vary with environmental conditions such as temperature.  相似文献   
3.
The life cycle of most reef fishes involves pelagic larvae entering the nearshore environment to settle to benthic substrates. Settlement is considered to be highly risky as larvae encounter high rates of predation mortality associated with shallow nearshore habitats. This potential bottleneck may be particularly significant for many tropical snapper (Lutjanidae) species which bypass the reef to settle to very nearshore seagrass areas. To test the hypothesis that predation-related mortality increases as naïve late-stage fish larvae leave the offshore oceanic environment and enter the nearshore to settle, relative nocturnal predation rates on tethered late-stage snapper larvae were measured in oceanic, coral reef, and nearshore surface waters of the lower Florida Keys, USA. Both relative predation rate and probability of predation in oceanic areas seaward of the reef was significantly greater than over reef or nearshore seagrass/hardbottom habitats. This surprising result may be due to differences in the density or spatial distribution of potential predators between deep offshore (near flotsam at the surface) and shallow nearshore environments (demersal). These findings suggest that successful late-stage snapper larvae should avoid surface waters in deep oceanic areas and move upward in the water column as they pass over the reef and other shallow nearshore environments prior to settlement.  相似文献   
4.
The impact of grazing by herbivorous fishes (Acanthuridae, Scaridae, and Pomacentridae) on low coral-cover reefs was assessed by measuring rates of benthic algal production and consumption on inshore and offshore reefs in the upper Florida Keys. Algal production rates, determined in situ with caged and uncaged experimental plates, were low (mean 1.05 g C m−2 day−1) and similar among reef types. Algal consumption rates were estimated using two different models, a detailed model incorporating fish bite rates and algal yield-per-bite for one species extrapolated to a guild-wide value, and a general regression relating fish biomass to algal consumption. Algal consumption differed among reef types: a majority of algal production was consumed on offshore reefs (55–100%), whereas consumption on inshore patch reefs was 31–51%. Spatial variation in algal consumption was driven by differences in herbivorous fish species composition, density, and size-structure among reef types. Algal consumption rates also varied temporally due to seasonal declines in bite rates and intermittent presence of large-bodied, vagile, schooling species. Spatial coherence of benthic community structure and temporal stability of algal turf over 3 years suggests that grazing intensity is currently sufficient to limit further spread of macroalgal cover on these low coral-cover reefs, but not to exclude it from the system.  相似文献   
5.
Rankin TL  Sponaugle S 《PloS one》2011,6(5):e16814
For organisms with complex life cycles, processes occurring at the interface between life stages can disproportionately impact survival and population dynamics. Temperature is an important factor influencing growth in poikilotherms, and growth-related processes are frequently correlated with survival. We examined the influence of water temperature on growth-related early life history traits (ELHTs) and differential mortality during the transition from larval to early juvenile stage in sixteen monthly cohorts of bicolor damselfish Stegastes partitus, sampled on reefs of the upper Florida Keys, USA over 6 years. Otolith analysis of settlers and juveniles coupled with environmental data revealed that mean near-reef water temperature explained a significant proportion of variation in pelagic larval duration (PLD), early larval growth, size-at-settlement, and growth during early juvenile life. Among all cohorts, surviving juveniles were consistently larger at settlement, but grew more slowly during the first 6 d post-settlement. For the other ELHTs, selective mortality varied seasonally: during winter and spring months, survivors exhibited faster larval growth and shorter PLDs, whereas during warmer summer months, selection on PLD reversed and selection on larval growth became non-linear. Our results demonstrate that temperature not only shapes growth-related traits, but can also influence the direction and intensity of selective mortality.  相似文献   
6.

Environmental clines such as latitude and depth that limit species’ distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems (~30–150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish (Stegastes partitus) ranging from shallow shelf (SS, <10 m) and deep shelf (DS, 20–30 m) habitats in the Florida Keys to mesophotic depths (MP, 60–70 m) at Pulley Ridge on the west Florida Shelf. Diet, behavior, and potential energetic trade-offs differed across study sites, but did not always have a monotonic relationship with depth, suggesting that some drivers of habitat suitability are decoupled from depth and may be linked with geographic location or the local environment. Feeding and diet composition differed among depths with the highest consumption of annelids, lowest ingestion of appendicularians, and the lowest gut fullness in DS habitats where predator densities were highest and fish exhibited risk-averse behavior that may restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  相似文献   
7.
Information obtained from fish otoliths has been a critical component of fisheries management for decades. The nature of this information has changed over time as management goals and approaches have shifted. The earliest and still most pervasively used data are those of annual age and growth used to calculate the demographic rates of populations in single-species management strategies. Over time, the absence of simple stock-recruitment relationships has focused attention on the youngest stages, where otolith microstructure resolved on a daily basis has become a valuable tool. As management has transitioned to more ecosystem-based approaches, the need to understand ecological and oceanographic processes has been advanced through the analysis of daily otolith microstructure. Recent field examples illustrate how otolith microstructure data have been used to reveal environmental influences on larval growth, traits that lead to higher survivorship, mechanisms of larval transport, dynamics of dispersal and population connectivity, determinants of recruitment magnitude, carry-over processes between life stages, habitat-specific juvenile survival, and identification of natal sources. Daily otolith-derived data collected at an individual level are increasingly combined with data from other disciplines and incorporated into individual-based models, which in turn can form the building blocks of complex models of ecosystem dynamics. A mechanistic understanding of the ecology of young stages is particularly necessary in light of a rapidly changing ocean environment, as we need to be able to predict individual and population responses to perturbations. Otolith microstructure analysis is an important tool in our management arsenal, contributing to a broader understanding of the oceanographic and ecological processes underlying ecosystem dynamics.  相似文献   
8.
Many marine populations exhibit high variability in the recruitment of young into the population. While environmental cycles and oceanography explain some patterns of replenishment, the role of other growth-related processes in influencing settlement and recruitment is less clear. Examination of a 65-mo. time series of recruitment of a common coral reef fish, Stegastes partitus, to the reefs of the upper Florida Keys revealed that during peak recruitment months, settlement stage larvae arriving during dark lunar phases grew faster as larvae and were larger at settlement compared to those settling during the light lunar phases. However, the strength and direction of early trait-mediated selective mortality also varied by settlement lunar phase such that the early life history traits of 2–4 week old recruit survivors that settled across the lunar cycle converged to more similar values. Similarly, within peak settlement periods, early life history traits of settling larvae and selective mortality of recruits varied by the magnitude of the settlement event: larvae settling in larger events had longer PLDs and consequently were larger at settlement than those settling in smaller pulses. Traits also varied by recruitment habitat: recruits surviving in live coral habitat (vs rubble) or areas with higher densities of adult conspecifics were those that were larger at settlement. Reef habitats, especially those with high densities of territorial conspecifics, are more challenging habitats for young fish to occupy and small settlers (due to lower larval growth and/or shorter PLDs) to these habitats have a lower chance of survival than they do in rubble habitats. Settling reef fish are not all equal and the time and location of settlement influences the likelihood that individuals will survive to contribute to the population.  相似文献   
9.
Age‐based analysis of the stoplight parrotfish Sparisoma viride was used to examine whether observed differences in their abundance and size structure among reefs in a cross‐shelf portion of the upper Florida Keys could be explained by variation in demographic rates. Annual and daily sagittal otolith increments were enumerated for 176 individuals collected from replicates of reefs in two strata, inshore and offshore reefs (2–6 m depth). von Bertalanffy growth functions fitted to size‐at‐age plots for each site were similar between reefs within each stratum (inshore and offshore), but differed between strata. Sparisoma viride on offshore reefs attained greater average standard length (LS) at age, greater mean asymptotic size and were longer lived than fish from inshore reefs. Fish on inshore reefs attained only half the maximum age observed on offshore reefs (4 v. 8 years, respectively). No terminal phase fish >4 years of age were found on either reef type. Estimates of mortality rates from age‐frequency data of collected fish revealed higher mortality on inshore reefs. Demographic variables obtained in this study were similar to published values for S. viride from Caribbean reefs but differed significantly from published values from reefs at a similar latitude (Bahamas), reflecting high demographic plasticity on both local and regional scales.  相似文献   
10.
For benthic marine organisms with complex life cycles, conditionsexperienced by pelagic larvae can influence juvenile survival.Trait-specific selective mortality has been documented in thelaboratory and field, yet our knowledge of the factors contributingto the existence, strength, and consistency of natural selectivemortality is limited. We compiled previously published and unpublisheddata on the common Caribbean coral reef fish, Thalassoma bifasciatum,recruiting to Barbados, West Indies, and the upper Florida Keysto examine how environmental variability during pelagic larvallife influences the distribution of early life-history traitsexhibited by new recruits. We explored how the scope of variabilityin otolith-derived traits such as larval growth, pelagic larvalduration (PLD), size and condition at settlement, and earlyjuvenile growth influences the degree to which mortality ofjuveniles is selective. At both locations, contrasting oceanographicconditions (periodic passage of large low-salinity North BrazilCurrent [NBC] rings near Barbados and seasonal variation inwater temperature at Florida) led to significant differencesin the early life-history traits of recruits. Mortality wasmost frequently selective for the two most variable traits,condition at settlement and early juvenile growth. Environmentalvariability (including variation in predation pressure and stress-inducingconditions) also likely influences juvenile mortality and consequentlythe degree to which selective loss of particular traits occurs.As we begin to better understand the spatial, temporal, andspecies-specific circumstances in which events occurring duringlarval life influence juvenile performance, studies must alsobe extended to examine how these processes are translated intoadult fitness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号