The positron emission tomography (PET) ligand 11C‐labeled Pittsburgh compound B (PIB) is used to image β‐amyloid (Aβ) deposits in the brains of living subjects with the intent of detecting early stages of Alzheimer's disease (AD). However, deposits of human‐sequence Aβ in amyloid precursor protein transgenic mice and non‐human primates bind very little PIB. The high stoichiometry of PIB:Aβ binding in human AD suggests that the PIB‐binding site may represent a particularly pathogenic entity and/or report local pathologic conditions. In this study, 3H‐PIB was employed to track purification of the PIB‐binding site in > 90% yield from frontal cortical tissue of autopsy‐diagnosed AD subjects. The purified PIB‐binding site comprises a distinct, highly insoluble subfraction of the Aβ in AD brain with low buoyant density because of the sodium dodecyl sulfate‐resistant association with a limited subset of brain proteins and lipids with physical properties similar to lipid rafts and to a ganglioside:Aβ complex in AD and Down syndrome brain. Both the protein and lipid components are required for PIB binding. Elucidation of human‐specific biological components and pathways will be important in guiding improvement of the animal models for AD and in identifying new potential therapeutic avenues.
Summary The polymorphism of sperm diaphorase (SD) was investigated in 141 unrelated persons from Hessen, Germany, by high voltage thin-layer agarose gel electrophoresis (Age) and thin-layer isoelectric focusing on polyacrylamide gel (Pagif). In addition to the three known common phenotypes SD 1, 2-1, and 2, two further phenotypes with the preliminary designation SD 3-1 and SD 3-2 were discovered. This polymorphism can thus be explained in terms of three alleles, SD1, SD2, and SD3 segregating at an autosomal locus. The allele frequencies calculated from the five different phenotypes SD 1, 2, 2-1, 3-1, and 3-2 are: SD1=0.7553, SD2=0.2234, and SD3=0.0213. As we also found SD activity in female reproductive tract tissues (ovaries, oviducts, uterus), the term gonadal diaphorase (GD) appears to be applicable. 相似文献
The measurement of tissue and cell oxygenation is important for understanding cell metabolism. We have addressed this problem with a novel optical technique, called triplet imaging, that exploits oxygen-induced triplet lifetime changes and is compatible with a variety of fluorophores. A modulated excitation of varying pulse widths allows the extraction of the lifetime of the essentially dark triplet state using a high-fluorescence signal intensity. This enables the monitoring of fast kinetics of oxygen concentration in living cells combined with high temporal and spatial resolution. First, the oxygen-dependent triplet-state quenching of tetramethylrhodamine is validated and then calibrated in an L-ascorbic acid titration experiment demonstrating the linear relation between triplet lifetime and oxygen concentration according to the Stern-Volmer equation. Second, the method is applied to a biological cell system, employing as reporter a cytosolic fusion protein of β-galactosidase with SNAP-tag labeled with tetramethylrhodamine. Oxygen consumption in single smooth muscle cells A7r5 during an [Arg8]-vasopressin-induced contraction is measured. The results indicate a consumption leading to an intracellular oxygen concentration that decays monoexponentially with time. The proposed method has the potential to become a new tool for investigating oxygen metabolism at the single cell and the subcellular level. 相似文献
Endoreduplicated tetraploid metaphases could for the first time be induced in preimplantation mouse embryos by culture in the suboptimum medium MEM. In such endomitoses sister-chromatid exchange (SCE) frequency was approximately the same during the first and the second cell cycle. However, when morulae and blastocysts were cultured in the presence of cyclophosphamide metabolites SCE frequency was increased predominantly during the second cell cycle. Compared to diploid metaphases a decreased SCE frequency was found under both conditions of endomitoses induction, which may be related to DNA-repair processes. 相似文献
Hutchinson-Gilford progeria syndrome (HGPS) is caused by the synthesis of a truncated prelamin A, commonly called progerin, that contains a carboxyl-terminal farnesyl lipid anchor. The farnesyl lipid anchor helps to target progerin to membrane surfaces at the nuclear rim, where it disrupts the integrity of the nuclear lamina and causes misshapen nuclei. Several lines of evidence have suggested that progerin's farnesyl lipid anchor is crucial for the emergence of disease phenotypes. Because a geranylgeranyl lipid is approximately 45-fold more potent than a farnesyl lipid in anchoring proteins to lipid membranes, we hypothesized that a geranylgeranylated version of progerin might be more potent in eliciting disease phenotypes. To test this hypothesis, we used gene targeting to create mice expressing geranylgeranylated progerin (Lmna(ggHG/+)). We then compared Lmna(ggHG/+) mice, side-by-side, with otherwise identical mice expressing farnesylated progerin (Lmna(HG/+)). Geranylgeranylation of progerin in Lmna(ggHG/+) cells and farnesylation of progerin in Lmna(HG/+) cells was confirmed by metabolic labeling. Contrary to our expectations, Lmna(ggHG/+) mice survived longer than Lmna(HG/+) mice. The Lmna(ggHG/+) mice also exhibited milder bone disease. The steady-state levels of progerin, relative to lamin C, were lower in Lmna(ggHG/+) mice than in Lmna(HG/+) mice, providing a potential explanation for the milder disease in Lmna(ggHG/+) mice. 相似文献