首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2006年   2篇
  2003年   1篇
  2001年   2篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有30条查询结果,搜索用时 62 毫秒
1.
Anatomical and neurophysiological findings have demonstrated neuronal connections between the diencephalic habenular nuclei and brain stem serotonergic raphe nuclei. Therefore we examined some neurochemical consequences of habenular lesions. Sixteen hours and one week after bilateral lesions serotonin metabolism (as reflected by concentrations of its metabolite, 5-hydroxyindoleacetic acid) was significantly increased in the dorsal but not the median raphe nuclei. Unilateral lesions produced a proportionally smaller augmentation. Motron locomotor activity was enhanced during the light and dark illumination phases in lesioned animals but only attained statistical significance during the day.  相似文献   
2.
Evidence has been accumulated implicating sex hormones as possible modulators of extrapyramidal motor function. In the present study we have investigated the effects of estrogens, progesterone, testosterone, prolactin and calcitonin on behavioral parameters related to nigro-striatal dopaminergic system, such as haloperidol-induced catalepsy in male rats. It was found that 7-days estradiol benzoate treatment (5 micrograms/rat/day) significantly increases haloperidol-induced catalepsy, suggesting a possible antidopaminergic activity of estrogens. On the other hand, prolactin facilitates nigro-striatal dopaminergic transmission. Interestingly, 7 day treatment with medroxy-acetate progesterone (MAP, 5 mg/Kg, i.p.) brings about a trend to a decrease in haloperidol-induced catalepsy, while no significantly effect was observed following acute MAP administration at the same dose. So, it is tempting to speculate that chronic progestinic treatment may result in an increase in dopaminergic tonus. Testosterone, acutely administered (5mg/kg.s.c.) induces changes similar to those observed following progesterone administration. Finally, also calcitonin is able to influence haloperidol-induced catalepsy by markedly increasing it.  相似文献   
3.
4.
To identify the best biotypes, an extensive survey of Sicilian wild rosemary was carried out by collecting 57 samples from various sites, followed by taxonomic characterization from an agronomic perspective. All the biotypes collected were classified as Rosmarinus officinalis L. A cluster analysis based on the morphological characteristics of the plants allowed the division of the biotypes into seven main groups, although the characteristics examined were found to be highly similar and not area‐dependent. Moreover, all samples were analyzed for their phytochemical content, applying an extraction protocol to obtain the nonvolatile components and hydrodistillation to collect the essential oils for the volatile components. The extracts were characterized by LC‐UV‐DAD/ESI‐MS, and the essential oils by GC‐FID and GC/MS analyses. In the nonvolatile fractions, 18 components were identified, namely, 13 flavones, two organic acids, and three diterpenes. In the volatile fractions, a total of 82 components were found, with as predominant components α‐pinene and camphene among the monoterpene hydrocarbons and 1,8‐cineole, camphor, borneol, and verbenone among the oxygenated monoterpenes. Cluster analyses were carried out on both phytochemical profiles, allowing the separation of the rosemary samples into different chemical groups. Finally, the total phenol content and the antioxidant activity of the essential oils and extracts were determined with the FolinCiocalteu (FC) colorimetric assay, the UV radiation‐induced peroxidation in liposomal membranes (UV‐IP test), and the scavenging activity of the superoxide radical (O$\rm{{_{2}^{{^\cdot} -}}}$ ). The present study confirmed that the essential oils and organic extracts of the Sicilian rosemary samples analyzed showed a considerable antioxidant/free radical‐scavenging activity.  相似文献   
5.
6.
The possible mechanisms by which phospholipid metabolism may be involved in the biochemical events underlying pituitary hormone secretion in basal and stimulated conditions were examined. Particular emphasis was given to the role of changes in the turnover of specific membrane phospholipids, the polyphosphoinositides, in the stimulatory effect of TRH and neurotensin on prolactin release in vitro. Finally, some comments on the involvement of arachidonate and/or its metabolites in the mechanisms of release of the hormone have been reported. In this respect, the possibility that a specific diacylglycerol lipase may represent a link between the 'phosphatidylinositol effect' and the production of arachidonate from mammotroph membranal phospholipids was examined using the rather selective inhibitor of diacylglycerol lipase RHC80267.  相似文献   
7.
Uptake of Kynurenine into Rat Brain Slices   总被引:3,自引:3,他引:0  
The transport of [3H]kynurenine ([3H]KYN) into slices from rat tissue was examined in vitro. Brain accumulated KYN seven to eight times more effectively than any of several peripheral organs. Of all the organs tested, only the brain exhibited a sodium-dependent component of the uptake process. After an incubation period of 1 h, sodium-dependent transport amounted to 60% of total uptake. Both processes were abolished by prior sonication of the tissue and significantly inhibited by inclusion of metabolic blockers in the incubation medium. Time resolution showed that the sodium-independent uptake occurred rapidly and reached saturation within 30 min. In contrast, sodium-dependent transport was linear for at least 2 h of incubation. Brain regional analysis revealed a sevenfold difference between the areas of highest (cortex) and lowest (cerebellum) uptake. With the exception of cerebellar tissue, the ratio between sodium-dependent and sodium-independent processes was consistent among brain regions. Kinetic analyses were performed on striatal slices and revealed a Km of 927 microM and a Vmax of 18 nmol/h/mg of protein for the sodium-dependent process, and a Km of 3.8 mM and a Vmax of 38 nmol/10 min/mg of protein for the sodium-independent transport. The transporters were equally amenable to inhibition by KYN and tryptophan, indicating that KYN entry into the cell may be mediated by neutral amino acid uptake sites. No strict stereoselectivity existed, but L enantiomers were clearly more active than the D forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
Abstract: The de novo production and subsequent disposition of the endogenous excitotoxin quinolinic acid (QUIN) was investigated in vitro in tissue slices from rat brain and liver. Incubation of tissue with QUIN's immediate bioprecursor 3-hydroxyanthranilic acid (3-HANA) in oxygenated Krebs-Ringer buffer yielded measurable amounts of QUIN both in the tissue and in the incubation medium. Saturation was reached between 16 and 64 μM 3-HANA (166 pmol of QUIN formed per milligram of protein after a 60-min incubation with 64 μM 3-HANA). In the brain, more QUIN was recovered from the tissue than from the incubation medium at all time points examined (5 min to 4 h). In contrast, the tissue-to-medium ratio for QUIN in parallel experiments with hepatic slices was ? 1. The disposition of newly synthesized QUIN was further elaborated in tissue slices that had been preincubated for 60 min with 64 μM 3-HANA. Subsequent incubation of brain tissue in fresh buffer revealed a steady but relatively slow efflux of QUIN from the cellular compartment, with >30% remaining in the tissue after a 90-min incubation. Analogous experiments with liver slices showed that >93% of newly synthesized QUIN had entered the extracellular compartment within 30 min. Striatal and nigral slices obtained 7 days after an intrastriatal ibotenic acid injection showed severalfold increases in QUIN production compared with control tissues, in all likelihood due to astrogliosis and associated large increases in 3-hydroxyanthranilic acid oxygenase activity. In addition, the apparent tissue-to-medium ratio was markedly reduced in striatal slices from lesioned animals. Taken together, these data indicate that both brain and liver cells have a rather limited capacity to retain QUIN, and that 3-hydroxyanthranilic acid oxygenase activity is a critical determinant controlling extracellular QUIN concentrations in both organs. Changes in the activity of QUIN's biosynthetic enzyme in the brain can therefore be expected to influence the possible function of QUIN as an endogenous agonist at the N-methyl-D-aspartate receptor in health and disease.  相似文献   
9.
Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG). In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9) and effector caspases (caspase 7 and 3) and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号