首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   7篇
  2021年   1篇
  2020年   1篇
  2018年   4篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1979年   1篇
  1977年   1篇
  1961年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
Single batrachotoxin-activated sodium channels from rat brain were modified by trimethyloxonium (TMO) after incorporation in planar lipid bilayers. TMO modification eliminated saxitoxin (STX) sensitivity, reduced the single channel conductance by 37%, and reduced calcium block of inward sodium currents. These effects always occurred concomitantly, in an all-or-none fashion. Calcium and STX protected sodium channels from TMO modification with potencies similar to their affinities for block. Calcium inhibited STX binding to rat brain membrane vesicles and relieved toxin block of channels in bilayers, apparently by competing with STX for the toxin binding site. These results suggest that toxins, permeant cations, and blocking cations can interact with a common site on the sodium channel near the extracellular surface. It is likely that permeant cations transiently bind to this superficial site, as the first of several steps in passing inward through the channel.  相似文献   
2.
3.
4.
The present experiment examined interval timing in rats under dynamic conditions. A session began with FI60 s intervals, changed to a FI20 s, FI30 s, or FI40 s schedule at an unpredictable point, and then returned to a FI60 s schedule after the rats received 1, 8, or 24 successive short FI intervals. Variations in the duration and number of shorter intervals occurred across sessions and conditions. We observed rapid control of wait time duration by the FI duration of the preceding interval (one-back tracking), and changes in wait time depended on the number and duration of the shorter intervals. Furthermore, we observed proportional and scalar timing effects in overall wait time duration. The results provide information about the relation between interval timing under dynamic and steady state conditions.  相似文献   
5.
Resistance to conventional anticancer therapies in patients with advanced solid tumors has prompted the need of alternative cancer therapies. Moreover, the success of novel cancer therapies depends on their selectivity for cancer cells with limited toxicity to normal tissues. Several decades after Coley's work a variety of natural and genetically modified non-pathogenic bacterial species are being explored as potential antitumor agents, either to provide direct tumoricidal effects or to deliver tumoricidal molecules. Live, attenuated or genetically modified non-pathogenic bacterial species are capable of multiplying selectively in tumors and inhibiting their growth. Due to their selectivity for tumor tissues, these bacteria and their spores also serve as ideal vectors for delivering therapeutic proteins to tumors. Bacterial toxins too have emerged as promising cancer treatment strategy. The most potential and promising strategy is bacteria based gene-directed enzyme prodrug therapy. Although it has shown successful results in vivo yet further investigation about the targeting mechanisms of the bacteria are required to make it a complete therapeutic approach in cancer treatment.  相似文献   
6.
Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer’s disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 ­hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson’s disease.  相似文献   
7.
Spiders produce multiple types of silk that exhibit diverse mechanical properties and biological functions. Most molecular studies of spider silk have focused on fibroins from dragline silk and capture silk, two important silk types involved in the survival of the spider. In our studies we have focused on the characterization of egg case silk, a third silk fiber produced by the black widow spider, Latrodectus hesperus. Analysis of the physical structure of egg case silk using scanning electron microscopy demonstrates the presence of small and large diameter fibers. By using the strong protein denaturant 8 M guanidine hydrochloride to solubilize the fibers, we demonstrated by SDS-PAGE and protein silver staining that an abundant component of egg case silk is a 100-kDa protein doublet. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called ecp-1, which encodes for one of the protein components of the 100-kDa species. BLAST searches of the NCBInr protein data base using the primary sequence of ECP-1 revealed similarity to fibroins from spiders and silkworms, which mapped to two distinct regions within the ECP-1. These regions contained the conserved repetitive fibroin motifs poly(Ala) and poly(Gly-Ala), but surprisingly, no larger ensemble repeats could be identified within the primary sequence of ECP-1. Consistent with silk gland-restricted patterns of expression for fibroins, ECP-1 was demonstrated to be predominantly produced in the tubuliform gland, with lower levels detected in the major and minor ampullate glands. ECP-1 monomeric units were also shown to assemble into higher aggregate structures through the formation of disulfide bonds via a unique cysteine-rich N-terminal region. Collectively, our findings provide new insight into the components of egg case silk and identify a new class of silk proteins with distinctive molecular features relative to traditional members of the spider silk gene family.  相似文献   
8.
Abstract: In the present study, analytical techniques including gas chromatography/mass spectrometry (GC/MS)-assisted carbohydrate linkage-analysis, one- and two-dimensional NMR, and matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-MS) have been used to characterize the structure of the glycolipid associated with the paired helical filaments (PHF) isolated from the neurofibrillary tangles of Alzheimer's diseased brain. The 1H NMR spectrum of acid-hydrolyzed protein-resistant core PHF (prcPHF) displays resonances that can be assigned to fatty acid and glucose. There are no resonances present that would indicate the presence of protein, amino acids, or a sphingosine base. Using two-dimensional homonuclear correlated spectroscopy, homonuclear Hartmann-Hahn, and heteronuclear multiple quantum coherence experiments, resonances in the 1H and 13C NMR spectrum of native PHF were assigned to a nonreducing terminal α-1,6-glycosidically linked glucose, an internal α-1,6-linked glucose, and an α-1,2,6-linked glucose. The narrow line-widths observed for these residues suggest that they arise from glucose residues undergoing rapid segmental motion. The carbohydrate portion of the PHF-associated glycolipid was analyzed using GC/MS linkage analysis and confirmed the presence of terminal and internal α-1,6-linked glucose and α-1,2,6-linked glucose in a molar ratio of 2:1:1. Three components of the PHF-associated glycolipid fraction having masses 2,416, 2,325, and 2,237 Da were observed using MALDI-MS. The least abundant, heavier mass component (2,416 Da) was best fit to a structure with a tridecamer of glucose having a single esterified C20 fatty acid (Glc13 + C20 or Glc13 + C20:1), whereas the more abundant, lower mass components were best fit to noncovalently associated glycolipid dimers, each with a glucose pentamer or hexamer having two C14, C16, or C18 esterified fatty acids {D[(Glc5 + C18) + (Glc6 + C16)] or D[(Glc5 + C14) + (Glc6 + C14)]}. The ratio of glucose to fatty acid calculated from these best-fit structures of the more abundant mass components (5.5 ± 1.1:1.0) is in reasonable agreement with the same ratio calculated from peak integrations in the NMR spectra of acid-hydrolyzed prcPHF (6.2 ± 1.6). Structural similarities between PHF-associated glycolipid and other glycolipid amphiphiles known to form PHF-like filaments indirectly suggest that this unique glycolipid may be an integral component of the PHF suprastructure.  相似文献   
9.
A thorough understanding of the life cycles underlying the demography of wild species is limited by the difficulty of observing hidden life‐history traits, such as embryonic development. Major aspects of embryonic development, such as the rate and timing of development, and maternal–fetal interactions can be critical features of early‐life fitness and may impact population trends via effects on individual survival. While information on development in wild snakes and lizards is particularly limited, the repeated evolution of viviparity and diversity of reproductive mode in this clade make it a valuable subject of study. We used field‐portable ultrasonography to investigate embryonic development in two sympatric garter snake species, Thamnophis sirtalis and Thamnophis elegans in the Sierra Nevada mountains of California. This approach allowed us to examine previously hidden reproductive traits including the timing and annual variation in development and differences in parental investment in young. Both species are viviparous, occupy similar ecological niches, and experience the same annual environmental conditions. We found that T. sirtalis embryos were more developmentally advanced than T. elegans embryos during June of three consecutive years. We also found that eggs increased in volume more substantially across developmental stages in T. elegans than in T. sirtalis, indicating differences in maternal provisioning of embryos via placental transfer of water. These findings shed light on interspecific differences in parental investment and timing of development within the same environmental context and demonstrate the value of field ultrasonography for pursuing questions relating to the evolution of reproductive modes, and the ecology of development.  相似文献   
10.
Accumulating evidence suggests that within‐individual plasticity of behavioural and physiological traits is limited, resulting in stable among‐individual differences in these aspects of the phenotype. Furthermore, these traits often covary within individuals, resulting in a continuum of correlated phenotypic variation among individuals within populations and species. This heterogeneity, in turn, affects individual fitness and can have cross‐generational effects. Patterns of trait covariation, among‐individual differences, and subsequent fitness consequences have long been recognized in reptiles. Here, we provide a test of patterns of among‐individual heterogeneity in behaviour and physiology and subsequent effects on reproduction and offspring fitness in the garter snake Thamnophis elegans. We find that measures of activity levels vary among individuals and are consistent within individuals in reproductive female snakes, indicating stable behavioural phenotypes. Blood hormone and glucose concentrations are not as stable within individuals, indicating that these traits do not describe consistent physiological phenotypes. Nonetheless, the major axes of variation in maternal traits describe behavioural and physiological phenotypes that interact to predict offspring body condition and mass at birth. This differential allocation of energy to offspring, in turn, strongly influences subsequent offspring growth and survival. This pattern suggests the potential for strong selection on phenotypes defined by behaviour–physiology interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号