首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   10篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   15篇
  2009年   6篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   7篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1988年   15篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1963年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
1.
2.
Isolate M of Potato virus A (PVA‐M; genus Potyvirus) is avirulent in Nicandra physaloides L. (family Solanaceae). The inoculated leaves are infected but no systemic infection is observed. Forty plants of ‘Black Pod’ (BP) and ‘Black Pod Alba’ (BPA), two variants of N. physaloides described in this study, were inoculated with PVA‐M. Two plants of BP and one plant of BPA were systemically infected. Mosaic, blistering and dark green islands developed on the systemically infected leaves, and flowers showed colour‐break symptoms. PVAprogeny were sequence‐characterised for the 6K2 protein and viral genome‐linked protein (VPg) encoding regions known to control the long distance movement of PVA in N. physaloides. All virus progeny (designated as PVA‐Mm) in the systemically infected leaves of the plants inoculated with PVA‐M contained only a single amino acid substitution (Vail 16Met) in the central part of VPg due to a nucleotide substitution G6033A, as compared to PVA‐M. Other PVA isolates that infected N. physaloides systemically also contained Metll6 in VPg. In a previous study using chimeric viruses, Metl16 in VPg was shown to be a major determinant for vascular movement of PVA in N. physaloides, and this study reveals that the mutation for Metl16 can occur in vivo during replication of the avirulent PVA‐M in infected plants. Immunolocalisation studies on BP and BPA plants showed that the pods (berries) and seed coat contained PVA‐Mm in the developing seeds, but no virus was detected in embryons. Up to 27% of the mature seeds contained PVA‐Mm but no transmission to seedlings was observed in a total of 450 seeds tested, and no test plants were infected following mechanical inoculation with extracts prepared from the seeds.  相似文献   
3.
ERKKI KORPIMÄKI 《Ibis》1987,129(1):58-68
Timing of breeding in Tengmalm's Owl was studied in western Finland for 13 years. During 1973-85, half of the females started laying before 4 April, near the seasonal low of main food abundance (voles), and earlier than in southern Finland or as early as in southeastern Norway. The reason for this latitudinal trend is the shallow snow cover of the study area. The annual variation in the median laying dates was one month and was negatively correlated with the spring abundance of Microtus voles. The mean clutch size was related to the start of laying with early clutches being larger than late ones. These findings accord with the 'food limitation hypothesis', which states that laying begins as soon as the female can accumulate enough energy stores for forming eggs. Early breeding is adaptive, since juveniles of early clutches probably survive better during their first winter. In adults, early nesting improves the chances of rearing two broods per year, allows them to moult after breeding and gives more time to accumulate fat reserves to survive the winter. Tengmalm's Owl is one of the earliest breeders among North European birds. This is possible because of its hole-nesting and resident habits, small body-size in relation to the main prey and the greatest sexual size dimorphism among European owls.  相似文献   
4.
5.
Abstract.
  • 1 Among-population differences in pupal mass were studied in a geometrid, Epirrita autumnata. Some Epirrita autumnata populations regularly reach outbreak densities while others are never known to do so. Because adults do not feed, pupal mass of females correlates strongly with fecundity.
  • 2 Larvae were collected from twelve field sites. Ten of our sample populations originated within the outbreak range of the species and represented different phases of outbreaks. Two populations originated outside the outbreak range.
  • 3 Pupal mass of field-collected E. autumnata varied significantly among populations. The peak phase populations had the smallest pupae and the biggest were found in low density populations outside the outbreak range.
  • 4 Offspring of moths from each population were reared under identical conditions in two larval densities. Significant differences were not found in pupal mass among populations. That is, the inherent size, correlated with fecundity of moths, was not different between populations originating within and outside the outbreak range, nor among collections from different densities or phases of the outbreaks.
  • 5 Rearing density did not interact in a consistent way with population.
  • 6 As far as size and fecundity are concerned, the results do not support Chitty's hypothesis that differences in genetic composition of the population at low and high density phases generate cyclic fluctuations of population density.
  • 7 Because no hereditary or maternal differences were found in size and fecundity between E.autumnata originating within and outside the outbreak range, variation in reproductive capacity cannot explain why outbreaks occur only in some populations.
  相似文献   
6.
Fourteen recombinant plasmids were constructed by inserting fragments of pSAS, a naturally occurring plasmid ofMethylophilus spp. KISRI-5, into the multiple cloning sites of pUC19. Six recombinants and three knownEscherichia coli plasmids were used to transform three thermotolerant methylotrophic KISRI strains by use of an optimized protocol of electroporation. Analysis of transformants for plasmid DNA showed that all plasmids were stable in the methylotrophic hosts. These studies offer opportunities to developMethylophilus spp. as host-vector systems.  相似文献   
7.
Anti-group A streptococcal monoclonal antibodies were obtained from BALB c/BYJ mice immunized with purified membranes from M type 5 Streptococcus pyogenes. Two of the anti-streptococcal monoclonal antibodies were previously shown to cross-react with muscle myosin. In this study the monoclonal antibodies were reacted with tissue sections of normal human heart and skeletal muscle. Antibody binding was estimated by indirect immunofluorescence and immunoperoxidase techniques. Both of the monoclonal antibodies (36.2.2 and 54.2.8) investigated in this report reacted with heart and/or skeletal muscle sections. When evaluated by immunofluorescence, monoclonal antibody 54.2.8 demarcated the periphery of cardiac striated muscle cells and reacted to a lesser degree with subsarcolemmal components. Monoclonal antibody 36.2.2 failed to react with heart sections, but both of the monoclonal antibodies reacted strongly with skeletal muscle sections. Results similar to those observed with indirect immunofluorescence were obtained with the immunoperoxidase technique. By Western immunoblotting and competitive inhibition assays, monoclonal antibodies 36.2.2 and 54.2.8 both were found to react with the heavy chain of skeletal muscle myosin. However, only 54.2.8 reacted with the heavy chain of cardiac myosin. The specificity of the monoclonal antibodies for subfragments of skeletal muscle myosin indicated that monoclonal antibody 36.2.2 was specific for light meromyosin fragments, whereas 54.2.8 reacted with both heavy and light meromyosin. The data demonstrated that two monoclonal antibodies against streptococci were specific for skeletal muscle and/or cardiac myosin and for subfragments of the myosin molecule. The reactions of the monoclonal antibodies with human tissue sections were consistent with the immunochemical reactions of the monoclonal antibodies with both denatured and native myosin.  相似文献   
8.
The group A streptococcal bacteriophage SP24 contains a unique phage att site and integrates into a common chromosomal locus in two unrelated group A streptococcal strains, CS24 and CS112. Southern blot analysis suggested that the terminally redundant phage DNA recombines to form the unit-length genome observed in the prophage state. Phage DNA integration appears to be required for stable lysogen formation and conversion to the M+ state; however, the precise role of the bacteriophage and the relationship of phage integration to increased M protein synthesis are unclear.  相似文献   
9.
Abstract The chloroplast ultrastructure, especially the thylakoid organization, the polypeptide composition of the thylakoid membranes and photosynthetic O2 evolution rate, chlorophyll (Chl) content and Chi a/b ratio were studied in leaves of nine plants growing in contrasting biotopes in the wild in South Finland. All the measurements were made at the beginning of the period of main growth on leaves approaching full expansion, when the CO2-saturated O2 evolution rate (measured at 20°C and 1500 μmol photons m?2s?1) was at a maximum, ranging from 19.2 to 6.9 μmol O2 cm?2 h?1. Among the species, the Chi a/b ratio varied between 3.75 and 2.71. In the mesophyll chloroplasts, the ratio of the total length of appressed to non-appressed thylakoid membranes varied between 1.07 and 1.79, the number of partitions per granum varied between 2.8 and 12.0 and the grana area between 21 and 42% of the chloroplast area. There was a significant relationship between the rate of O2 evolution of the leaf discs and the thylakoid organization in the mesophyll chloroplasts. The higher the O2 evolution rate, the lower was the ratio of the total length of appressed to non-appressed thylakoid membranes and also the lower the grana area. Although the relationship of the photosynthetic rate with the Chi content and the Chi a/b ratio of the leaves was not as clear, a significant negative correlation existed between the Chi a/b ratio and the ratio of appressed to non-appressed thylakoid membranes, indicating lateral heterogeneity in the distribution of different Chl- protein complexes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号