首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   14篇
  国内免费   1篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   10篇
  2014年   13篇
  2013年   15篇
  2012年   12篇
  2011年   18篇
  2010年   6篇
  2009年   6篇
  2008年   9篇
  2007年   12篇
  2006年   8篇
  2005年   14篇
  2004年   16篇
  2003年   7篇
  2002年   10篇
  2001年   6篇
  2000年   3篇
  1999年   9篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   5篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有249条查询结果,搜索用时 31 毫秒
1.
It has been shown that both IAA and ethylene application inhibit flower induction in the short-day plant Pharbitis nil. However application of IAA has elevated ethylene production in this plant, as well. Strong enhancement of ethylene production is also correlated with the night-break effect, which completely inhibits flowering. In order to determine what the role of IAA and ethylene is in the photoperiodic flower induction in Pharbitis nil, we measured changes in their levels during inductive and non-inductive photoperiods, and the effects of ethylene biosynthesis and action inhibitors on inhibition of flowering by IAA. Our results have shown that the inhibitory effect of IAA on Pharbitis nil flowering is not physiological but is connected with its effect on ethylene biosynthesis.  相似文献   
2.
The reversible inhibition of respiratory activity could provide a novel approach to the preservation of traditionally hard to store plant germplasm such as clonal materials and recalcitrant seed. The gaseous anesthetic nitrous oxide caused a reversible, dose-dependent, partial inhibition of dioxygen utilization in mitochondrial particles isolated from cell suspension cultures of the salt-tolerant marsh grass Distichlis spicata, with maximal inhibition of 33% after 30 minutes exposure to an atmosphere of 80% nitrous oxide plus 20% oxygen. Respiration of whole cells required longer time to be affected by the anesthetic, and was reversibly inhibited an average of 19% when measured using a differential respirometer. Exposure to 80% nitrous oxide plus 20% oxygen for up to 10 days caused no measurable effect on cell growth.Abbreviations PCV packed cell volume - EDTA sodium ethylenediaminetetraacetic acid - BSA bovine serum albumin - MOPS 3(N-morpholino) propanesulfonic acid - TMPD N,N,N',N'-tetramethyl-p-phenylene diamine - STP standard temperature and pressure  相似文献   
3.
4.
Physiology of F-Pilin Synthesis and Utilization   总被引:9,自引:5,他引:4       下载免费PDF全文
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to study the synthesis and turnover of F-pilin in membrane preparations of Escherichia coli K-12 under conditions which have been reported to affect the production of F-pili. Incorporation of [35S]methionine into membrane F-pilin by cells in log phase was barely detectable at 25°C, but increased with temperature. The labeled pilin band was prominent in membranes from 37°C cultures and even more prominent if the growth temperature was raised to 42°C. The appearance of other tra products in the membranes was similarly temperature dependent. In cultures grown in glucose minimal medium at 37°C, the relative amount of membrane pilin and traT product synthesis remained unchanged from early log phase through early stationary phase; provision of glycerol or arabinose as a substitute carbon source had no obvious effect. Turnover of traT product and membrane F-pilin, as assessed in an Flac tra mutant strain which is incapable of elaborating pili, was not rapid. Both traT product and pilin subunits labeled in mid-log phase cells were still apparent in the membranes after growth of the cells to stationary phase. The relative amount of labeled pilin decreased with prolonged incubation in stationary phase, but the relative amount of traT product did not decrease even after the culture was incubated for 24 h. When wild-type Flac piliated cells were used, a similar result was obtained, but in this case, loss of F-pilin from the preparations could be acclerated by blending the cells. Although intermittent blending during culture growth caused a slow depletion of the labeled pilin pool, continuous blending resulted in the rapid disappearance of this pool from our preparations. Loss of other membrane polypeptides was not accelerated by our blending procedure, and blending did not affect the turnover of the pilin pool of the Flac tra mutant. Our data are consistent with a model in which pilin subunits are assembled transiently into pili, conserved by retraction, and made available for subsequent reassembly. Growth in 0.01% sodium dodecyl sulfate did not accelerate loss of pilin from the Flac strain compared with the Flac tra strain, and we suggest that in the presence of sodium dodecyl sulfate at this concentration, F-pili are not elaborated from cell surfaces.  相似文献   
5.
6.
The objective of this study was to determine whether cells in G(0) phase are functionally distinct from those in G(1) with regard to their ability to respond to the inducers of DNA synthesis and to retard the cell cycle traverse of the G(2) component after fusion. Synchronized populations of HeLa cells in G(1) and human diploid fibroblasts in G(1) and G(0) phases were separately fused using UV-inactivated Sendai virus with HeLa cells prelabeled with [(3)H]ThdR and synchronized in S or G(2) phases. The kinetics of initiation of DNA synthesis in the nuclei of G(0) and G(1) cells residing in G(0)/S and G(1)/S dikaryons, respectively, were studied as a function of time after fusion. In the G(0)/G(2) and G(1)/G(2) fusions, the rate of entry into mitosis of the heterophasic binucleate cells was monitored in the presence of Colcemid. The effects of protein synthesis inhibition in the G(1) cells, and the UV irradiation of G(0) cells before fusion, on the rate of entry of the G(2) component into mitosis were also studied. The results of this study indicate that DNA synthesis can be induced in G(0)nuclei after fusion between G(0)- and S-phase cells, but G(0) nuclei are much slower than G(1) nuclei in responding to the inducers of DNA synthesis because the chromatin of G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells is more condensed than it is in G(1) cells. A more interesting observation resulting from this study is that G(0) cells differ from G(1) cells with regard to their effects on the cell cycle progression of the G(2) nucleus into mitosis. This difference between G(0) and G(1) cells appears to depend on certain factors, probably nonhistone proteins, present in G(1) cells but absent in G(0) cells. These factors can be induced in G(0) cells by UV irradiation and inhibited in G(1) cells by cycloheximide treatment.  相似文献   
7.

Introduction

Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients.

Methods

Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise).

Results

The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study.

Conclusion

A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients.

Trial registration

NCT01515163.  相似文献   
8.
Flavonoids have been reported to inhibit tumor growth by causing cell cycle arrest. However, little is known about the direct targets of flavonoids in tumor growth inhibition. In the present study, we developed a novel method using magnetic FG beads to purify flavonoid-binding proteins, and identified ribosomal protein S9 (RPS9) as a binding partner of the flavonoid apigenin. Similar to treatment with apigenin, knockdown of RPS9 inhibited the growth of human colon cancer cells at the G2/M phase by downregulating cyclin-dependent kinase 1 (CDK1) expression at the promoter level. Furthermore, knockdown of RPS9 suppressed G2/M arrest caused by apigenin. These results suggest that apigenin induces G2/M arrest at least partially by directly binding and inhibiting RPS9 which enhances CDK1 expression. We therefore raise the possibility that identification of the direct targets of flavonoids may contribute to the discovery of novel molecular mechanisms governing tumor growth.  相似文献   
9.
10.
The bacterial flagellar motor powers the rotation that propels the swimming bacteria. Rotational torque is generated by harnessing the flow of ions through ion channels known as stators which couple the energy from the ion gradient across the inner membrane to rotation of the rotor. Here, we used error‐prone PCR to introduce single point mutations into the sodium‐powered Vibrio alginolyticus/Escherichia coli chimeric stator PotB and selected for motors that exhibited motility in the presence of the sodium‐channel inhibitor phenamil. We found single mutations that enable motility under phenamil occurred at two sites: (i) the transmembrane domain of PotB, corresponding to the TM region of the PomB stator from V. alginolyticus and (ii) near the peptidoglycan binding region that corresponds to the C‐terminal region of the MotB stator from E. coli. Single cell rotation assays confirmed that individual flagellar motors could rotate in up to 100 µM phenamil. Using phylogenetic logistic regression, we found correlation between natural residue variation and ion source at positions corresponding to PotB F22Y, but not at other sites. Our results demonstrate that it is not only the pore region of the stator that moderates motility in the presence of ion‐channel blockers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号