首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   1篇
  2012年   3篇
  2011年   8篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   4篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1961年   1篇
  1917年   1篇
排序方式: 共有121条查询结果,搜索用时 827 毫秒
1.
Rabbit livers were preserved by continuous hypothermic (5 degrees C) perfusion at a flow rate of 1 ml/min-1 g-1 for as long as 72 hr. Cell swelling (total tissue water, TTW) and the rate at which intracellular enzymes were released into the perfusate were measured. Livers perfused with a simple NaCl-based solution containing hydroxyethyl starch as a colloid released relatively large amounts of aspartate aminotransferase (AST, 442 +/- 224 u/liter-1 100 g-1) and lactic dehydrogenase (LDH, 1580 +/- 688 u/liter-1 100 g-1) into the perfusate during 72 hr of perfusion. The addition of Ca (0.5 mmol/liter) to the perfusate reduced the leakage of enzymes into the perfusate (AST, 70 +/- 30 u; LDH, 450 +/- 50 u) and reduced cell swelling (TTW, 3.1 kg/kg dry mass vs 4.4 kg/kg dry mass without added Ca). But the use of a higher concentration of Ca (1.5 mmol/liter) caused membrane damage (AST, 4000 +/- 1500 u; LDH, 10,000 +/- 2222 u) and increased cell swelling (TTW, 3.7 kg/kg dry mass). The release of intracellular enzymes caused by continuous perfusion with a chloride-based perfusate also could be reduced by replacing the chloride with lactobionate (AST, 100 +/- 30 u; LDH, 400 +/- 100 u, at 72 hr). In the lactobionate-containing perfusate, the addition of Ca (0.5 or 1.5 mmol/liter) did not alter the rate at which intracellular enzymes were released. There was no tissue swelling after 72 hr of preservation with the lactobionate-containing perfusate, and the TTW (2.1 kg/kg dry mass) was similar to the TTW of freshly harvested rabbit livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
The alpha-like globin gene cluster in rabbits contains embryonic zeta- globin genes, an adult alpha-globin gene, and theta-globin genes of undetermined function. The basic arrangement of genes, deduced from analysis of cloned DNA fragments, is 5'-zeta 0-zeta 1-alpha 1-theta 1- zeta 2-zeta 3-theta 2-3'. However, the pattern of restriction fragments containing zeta- and theta-globin genes varies among individual rabbits. Analysis of BamHI fragments of genomic DNA from 24 New Zealand white rabbits revealed eight different patterns of fragments containing zeta-globin genes. The large BamHI fragments containing genes zeta 0 and zeta 1 are polymorphic in length, whereas a 1.9-kb fragment containing the zeta 2 gene and the 3.5-kb fragment containing the zeta 3 gene do not vary in size. In contrast to this constancy in the size of the restriction fragments, the copy number of the zeta 2 and zeta 3 genes does vary among different rabbits. No length polymorphism was detected in the BamHI fragments containing the theta-globin genes, but again the copy number varies for restriction fragments containing the theta 2 gene. The alpha 1- and theta 1-globin genes are located in a nonpolymorphic 7.2-kb BamHI fragment. The combined data from hybridization with both zeta and theta probes shows that the BamHI cleavage pattern does not vary within the region 5'-alpha 1-theta 1- zeta 2-zeta 3-theta 2-3', but the pattern genomic blot-hybridization patterns for the progeny of parental rabbits with different zeta-globin gene patterns shows that the polymorphic patterns are inherited in a Mendelian fashion. Two different haplotypes have been mapped based on the genomic blot-hybridization data. The variation in the alpha-like globin gene cluster in the rabbit population results both from differences in the copy number of the duplication block containing the zeta-zeta-theta gene set and from the presence or absence of polymorphic BamHI sites.   相似文献   
3.
In order to study the relationships among mammalian alpha-globin genes, we have determined the sequence of the 3' flanking region of the human alpha 1 globin gene and have made pairwise comparisons between sequenced alpha-globin genes. The flanking regions were examined in detail because sequence matches in these regions could be interpreted with the least complication from the gene duplications and conversions that have occurred frequently in mammalian alpha-like globin gene clusters. We found good matches between the flanking regions of human alpha 1 and rabbit alpha 1, human psi alpha 1 and goat I alpha, human alpha 2 and goat II alpha, and horse alpha 1 and goat II alpha. These matches were used to align the alpha-globin genes in gene clusters from different mammals. This alignment shows that genes at equivalent positions in the gene clusters of different mammals can be functional or nonfunctional, depending on whether they corrected against a functional alpha-globin gene in recent evolutionary history. The number of alpha-globin genes (including pseudogenes) appears to differ among species, although highly divergent pseudogenes may not have been detected in all species examined. Although matching sequences could be found in interspecies comparisons of the flanking regions of alpha- globin genes, these matches are not as extensive as those found in the flanking regions of mammalian beta-like globin genes. This observation suggests that the noncoding sequences in the mammalian alpha-globin gene clusters are evolving at a faster rate than those in the beta-like globin gene clusters. The proposed faster rate of evolution fits with the poor conservation of the genetic linkage map around alpha-globin gene clusters when compared to that of the beta-like globin gene clusters. Analysis of the 3' flanking regions of alpha-globin genes has revealed a conserved sequence approximately 100-150 bp 3' to the polyadenylation site; this sequence may be involved in the expression or regulation of alpha-globin genes.   相似文献   
4.
The effect of temperature on the rate of ADP-stimulated respiration of mitochondria from dog, rabbit, pig, and human kidney cortex mitochondria was plotted according to the Arrhenius relationship. The temperature at which the plot demonstrated a break was at 15 °C for mitochondria from dog, pig, and human kidneys. The discontinuity occurred at 10 °C or less for mitochondria from rabbit kidneys. This difference suggests that mitochondria from rabbit kidneys undergo a lipid-phase transition at lower temperatures than for other species commonly used in experimental renal preservation. The implications of this difference suggest caution in using results obtained with rabbit kidneys for comparison to results obtained from hypothermic renal preservation of other species kidneys. Apparent fluidization of dog kidney mitochondrial membranes with adamantine abolished the discontinuity in the Arrhenius plot.  相似文献   
5.
Livers from fed, fasted (48 h) and glucose-fed rabbits were preserved for 24 and 48 h by either simple cold storage (CS) or continuous machine perfusion (MP) with the University of Wisconsin preservation solutions. After preservation liver functions were measured by isolated perfusion of the liver (at 37 degrees C) for 2 h. Fasting caused an 85% reduction in the concentration of glycogen in the liver but no change in ATP or glutathione. Glucose feeding suppressed the loss of glycogen (39% loss). After 24 h preservation by CS livers from fed or fasted animals were similar including bile production (6.2 +/- 0.5 and 5.6 +/- 0.4 ml/2 h, 100 g, respectively), hepatocellular injury (LDH release = 965 +/- 100 and 1049 +/- 284 U/liter), and concentrations of ATP (1.17 +/- 0.15 and 1.18 +/- 0.04 mumol/g, glutathione (1.94 +/- 0.51 and 2.35 +/- 0.26 mumol/g, respectively), and K:Na ratio (6.7 +/- 1.0 and 7.7 +/- 0.5, respectively). After 48 h CS livers from fed animals were superior to livers from fasted animals including significantly more bile production (5.0 +/- 0.9 vs 2.0 +/- 0.3 ml/2 h, 100 g), less LDH release (1123 +/- 98 vs 3701 +/- 562 U/liter), higher concentration of ATP (0.50 +/- 0.16 vs 0.33 +/- 0.07 mumol/g) and glutathione (0.93 +/- 0.14 vs 0.30 +/- 0.13 mumol/g), and a larger K:Na ratio (7.4 vs 1.5). Livers from fed animals were also better preserved than livers from fasted animals when the method was machine perfusion. The decrease in liver functions in livers from fasted animals preserved for 48 h by CS or MP was prevented by feeding glucose. Glucose feeding increased bile formation after 48 h CS preservation from 2.0 +/- 0.3 (fasted) to 6.9 +/- 1.2 ml/2 h, 100 g; LDH release was reduced from 3701 +/- 562 (fasted) to 1450 +/- 154 U/liter; ATP was increased from 0.33 +/- 0.07 (fasted) to 1.63 +/- 0.18 mumol/g; glutathione was increased from 0.30 +/- 0.01 (fasted) to 2.17 +/- 0.30 mumol g; and K:Na ratio was increased from 1.5 +/- 0.9 to 5.3 +/- 1.0. This study shows that the nutritional status of the donor can affect the quality of liver preservation. The improvement in preservation by feeding rabbits only glucose suggests that glycogen is an important metabolite for successful liver preservation. Glycogen may be a source for ATP synthesis during the early period of reperfusion of preserved livers.  相似文献   
6.
The effects of in vivo ischemia and reflow on the respiratory control ratio (RCR) of rabbit kidney mitochondria (homogenates) was studied in rabbits pretreated with mannitol or chlorpromazine (CPZ). Two hours of ischemia damages mitochondria and lowers the RCR from about 13 to 2. Reflow to ischemic kidneys does not affect the RCR (RCR = 2.1), unless the rabbits are pretreated with mannitol (RCR = 11) or CPZ (RCR = 13.9). Although mannitol or CPZ pretreatment is effective at fully restoring the RCR to normal levels, the maximal rate of ADP-stimulated respiration remains partially depressed. Three hours of ischemia followed by reflow does not allow restoration of mitochondrial RCR even with mannitol or CPZ pretreatment. The mechanism of action of mannitol and CPZ may be explained on the basis of their vascular effects resulting in increased reflow in ischemic kidneys. Although a direct effect upon the metabolism of the ischemic kidney remains a possibility.  相似文献   
7.
There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.  相似文献   
8.
A mechanism suggested to cause injury to preserved organs is the generation of oxygen free radicals either during the cold-storage period or after transplantation (reperfusion). Oxygen free radicals can cause peroxidation of lipids and alter the structural and functional properties of the cell membranes. Methods to suppress generation of oxygen free radicals of suppression of lipid peroxidation may lead to improved methods of organ preservation. In this study we determined how cold storage of rat hepatocytes affected lipid peroxidation by measuring thiobarbituric acid reactive products (malondialdehyde, MDA). Hepatocytes were stored in the UW solution +/- glutathione (GSH) or +/- polyethylene glycol (PEG) for up to 96 h and rewarmed (resuspended in a physiologically balanced saline solution and incubated at 37 degrees C under an atmosphere of oxygen) after each day of storage. Hepatocytes rewarmed after storage in the UW solution not containing PEG or GSH showed a nearly linear increase in MDA production with time of storage and contained 1.618 +/- 0.731 nmol MDA/mg protein after 96 h. When the storage solution contained PEG and GSH there was no significant increase in MDA production after up to 72 h of storage and at 96 h MDA was 0.827 +/- 0.564 nmol/mg protein. When freshly isolated hepatocytes were incubated (37 degrees C) in the presence of iron (160 microM) MDA formation was maximally stimulated (3.314 +/- 0.941 nmol/mg protein). When hepatocytes were stored in the presence of PEG there was a decrease in the capability of iron to maximally stimulate lipid peroxidation. The decrease in iron-stimulated MDA production was dependent upon the time of storage in PEG (1.773 nmol/mg protein at 24 h and 0.752 nmol/mg protein at 48 h).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
Studies were done to evaluate the effects of alpha-tocopherol deficiency in rats on the fatty acid composition and sensitivity to lipid peroxidation (LP) of mitochondria and microsomes from adrenal glands, testes, and livers. In control (alpha-tocopherol-sufficient) animals, adrenal concentrations of alpha-tocopherol were approximately 10 times greater than those in livers and testes. Dietary deficiency of alpha-tocopherol for 8 weeks decreased adrenal and hepatic concentrations by 80-90% and testicular concentrations by approximately 60-70%. Incubation of testicular or hepatic mitochondria and microsomes from control rats with FeSO(4) (1.0 mM) caused a time-dependent stimulation of LP as indicated by the formation of thiobarbituric acid reactive substances (TBARS); the rate of TBARS production increased in preparations from alpha-tocopherol-deficient animals. TBARS formation was not demonstrable in adrenal mitochondria or microsomes from alpha-tocopherol sufficient rats, but reached high levels in alpha-tocopherol-deficient preparations. The fatty acid composition of mitochondria and microsomes was tissue-dependent. In particular, arachidonic acid comprised approximately 40% of the total fatty acids in adrenal membranes, but only 20-25% in testes and livers. alpha-Tocopherol deficiency increased oleic acid concentrations in adrenal and hepatic mitochondria and microsomes but not in testes. In all three tissues, linoleic acid concentrations decreased by approximately 50%, but arachidonic acid levels were unaffected by alpha-tocopherol deficiency. The results indicate a close relationship between tissue sensitivity to LP in vitro and alpha-tocopherol concentrations. Nonetheless, any oxidative stress in vivo caused by alpha-tocopherol deficiency seems to spare arachidonic acid in mitochondria and microsomes but decreases linoleic acid concentrations. It is possible that because of the important physiological functions of arachidonic acid, metabolic adaptations serve to maintain membrane content during periods of oxidative stress.  相似文献   
10.
Ischemic preconditioning (IPC) is a phenomenon of protection in various tissues from normothermic ischemic injury by previous exposure to short cycles of ischemia-reperfusion. The ability of IPC to protect hepatocytes from a model of hypothermic transplant preservation injury was tested in this study. Rat hepatocytes were subjected to 30min of warm ischemia (37 degrees C) followed by 24 or 48h of hypothermic (4 degrees C) storage in UW solution and subsequent re-oxygenation at normothermia for 1h. Studies were performed with untreated control cells and cells treated with IPC (10min anoxia followed by 10min re-oxygenation, 1 cycle). Hepatocytes exposed to IPC prior to warm ischemia released significantly less LDH and had higher ATP concentrations, relative to untreated ischemic hepatocytes. IPC significantly reduced LDH release after 24h of cold storage before reperfusion and after 48h of cold storage and after 60min of warm re-oxygenation, relative to the corresponding untreated hepatocytes. ATP levels were also significantly higher when IPC was used prior to the warm and cold ischemia-re-oxygenation protocols. In parallel studies, IPC increased new protein synthesis and lactate after cold storage and reperfusion compared to untreated cells but no differences in the patterns of protein banding were detected on electrophoresis between the groups. In conclusion, IPC significantly improves hepatocyte viability and energy metabolism in a model of hypothermic preservation injury preceded by normothermic ischemia. These protective effects on viability may be related to enhanced protein and ATP synthesis at reperfusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号