首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   10篇
  国内免费   1篇
  117篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   8篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2004年   10篇
  2003年   2篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   6篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1947年   1篇
  1945年   1篇
  1929年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the metabolic events that follow.  相似文献   
2.
As with most amino acid biosynthetic pathways in streptomycetes, enzymes of arginine biosynthesis inStreptomyces coelicolor show only slight derepression in minimal medium without, as opposed to with, exogenous arginine. However, when an arginine auxotroph was cultured in limiting arginine, ornithine carbamoyltransferase (OCT) activities rose by as much as 100-fold. The response was not due to a general starvation effect. To elucidate the repression-derepression mechanism, a DNA fragment containing the upstream region of the previously isolatedS. coelicolor argCJB cluster was cloned into a multicopy vector and transformed into wild-typeS. coelicolor; a slight transient derepression of OCT was observed in minimal medium without, though not with, added arginine, consistent with titration by the insert of a negatively acting macromolecule such as a repressor. A sub-fragment carrying the 5 end ofargC and the region immediately upstream showed specific binding, in mobility shift assays, to purified AhrC, the repressor/activator of genes of arginine metabolism inBacillus subtilis. It is therefore likely that inS. coelicolor, expression of arginine biosynthesis genes is controlled by a protein homologous to the well-characterisedB. subtilis andEscherichia coli repressors.  相似文献   
3.
4.
The low density lipoprotein (LDL) receptor plays a major role in maintaining human plasma cholesterol levels and mutations in the gene cause familial hypercholesterolemia. The LDL receptor (LDLR) pathway has been well characterized, but little is known of proteins involved in its complex intracellular sorting and trafficking. Sorting nexin 17 (SNX17) has recently been implicated in LDLR intracellular trafficking. We show here that endogenous SNX17 is highly expressed in several cell types and is localized partially in early endosomes. We found that the PX domain of SNX17 is required for its endosomal localization but does not interact directly with the LDL receptor. A novel domain containing a FERM-like domain of SNX17 is needed for its interaction with the LDL receptor. Mutations in the NPXY motif of the LDL-receptor cytoplasmic tail that disrupt internalization also disrupt its interaction with SNX17, whereas mutations elsewhere had little effect. When transiently overexpressed in Chinese hamster ovary cells, SNX17 localized to large vesicular structures and disrupted normal trafficking of the LDL receptor in a PX domain-dependent manner. These results suggest that SNX17 plays a role in the cellular trafficking of the LDL receptor through interaction with the NPVY motif in its cytoplasmic domain and interaction of the PX domain with subcellular membrane compartments.  相似文献   
5.
Normal human monocyte-derived macrophages maintained in medium containing whole serum exhibited saturable degradation of low-density lipoprotein (LDL) that was mediated by LDL receptors. This degradation required a higher concentration of LDL to achieve one-half saturation than that in cells preincubated with lipoprotein-deficient serum (LPDS). Studies of short-term uptake and of heparin-releasable binding of LDL showed that binding to the surface receptors was the limiting factor for degradation under both conditions and that the LDL receptors expressed by cells in whole serum had a significantly lower affinity for LDL than those in cells pre-incubated in LPDS. LDL receptors in monocyte-macrophages could mediate the uptake and degradation of complexes between apolipoprotein E (apoE) and phospholipid. The receptors in cells pre-incubated in LPDS bound the complexes and LDL with apparently the same affinity and in approximately the same molar ratio. Receptors in cells maintained with whole serum did not have a lower affinity for the complexes than cells pre-incubated in LPDS, although the molar ratio of maximum degradation of LDL to that of complexes was greater.  相似文献   
6.
7.
Current management of severe homozygous hypercholesterolaemias   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: This review focuses on recent advances in the management of patients with homozygous familial hypercholesterolaemia, autosomal recessive hypercholesterolaemia and familial defective apolipoprotein B. RECENT FINDINGS: Autosomal recessive hypercholesterolaemia has been described as a 'phenocopy' of homozygous familial hypercholesterolaemia. Although the clinical phenotypes are similar, autosomal recessive hypercholesterolaemia seems to be less severe, more variable within a single family, and more responsive to lipid-lowering drug therapy. The cardiovascular complications of premature atherosclerosis are delayed in some individuals and involvement of the aortic root and valve is less common than in homozygous familial hypercholesterolaemia. Apheresis is still the treatment of choice in homozygous familial hypercholesterolaemia and in autosomal recessive hypercholesterolaemia patients in whom maximal drug therapy does not achieve adequate control. In addition to the profound cholesterol-lowering effects of apheresis, other potentially beneficial phenomena have been documented: improved vascular endothelial function and haemorheology, reduction in lipoprotein (a) and procoagulatory status, and a decrease in adhesion molecules and C-reactive protein. SUMMARY: Patients with severe homozygous hypercholesterolaemia illustrate the natural history of atherosclerosis within a condensed timeframe. Effective cholesterol-lowering treatment started in early childhood is essential to prevent onset of life-threatening atherosclerotic involvement of the aortic root and valve, and the coronary arteries. Noninvasive methods for regular monitoring of the major sites involved in the atherosclerotic process are necessary in patients with no symptoms or signs of ischaemia. Management of patients with severe homozygous hypercholesterolaemia continues to be a major challenge.  相似文献   
8.
One hundred ninety-six patients treated for oral cancer between 1992 and 1999 self-scored their speech, chewing, and swallowing using a new self-questionnaire (Functional Intraoral Glasgow Scale) developed at Canniesburn Hospital, Glasgow, to assess the functional efficiency of patients treated for intraoral cancer. The patients were distributed into 12 homogeneous groups, according to the site and size of surgical resection, carefully mapped out on standard diagrams of the oral cavity. The functional outcome for chewing and swallowing was correlated to the site and size of resected tissue, to the reconstruction modality, and to radiotherapy and compared with the speech quality. The general trend is very similar for both chewing and swallowing; the smaller the resections, the better the functional outcome. Chewing was mostly affected by resections of the floor of the mouth, whereas swallowing was mostly affected by demolition of the base of the tongue and of the retromolar trigone. Speech showed a better postoperative recovery than chewing and swallowing. The reconstruction modality did not influence the eventual outcome for either function. Radiotherapy in combination with surgery is a negative functional prognostic factor. A correlation between site and size of excision and functional outcome is presented using color multiple-view diagrams for immediate appreciation to identify positive and negative prognostic factors.  相似文献   
9.
10.
1. A mutant of Escherichia coli, devoid of phosphopyruvate synthetase, glucosephosphate isomerase and 6-phosphogluconate dehydrogenase activities, grew readily on gluconate and inducibly formed an uptake system for gluconate, gluconate kinase and 6-phosphogluconate dehydratase while doing so. 2. This mutant also grew on glucose 6-phosphate and inducibly formed 6-phosphogluconate dehydratase; however, the formation of the gluconate uptake system and gluconate kinase was not induced under these conditions. 3. The use of the Entner–Doudoroff pathway for the dissimilation of 6-phosphogluconate, derived from either gluconate or glucose 6-phosphate, by this mutant was also demonstrated by the accumulation of 2-keto-3-deoxy-6-phosphogluconate (3-deoxy-6-phospho-l-glycero-2-hexulosonate) from both these substrates in a similar mutant that also lacked phospho-2-keto-3-deoxygluconate aldolase activity. 4. Glucose 6-phosphate inhibits the continued utilization of fructose by cultures of the mutants growing on fructose, as it does in wild-type E. coli. 5. The mutants do not use glucose for growth. This is shown to be due to insufficiency of phosphopyruvate, which is required for glucose uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号