首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   4篇
  2024年   1篇
  2022年   2篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有21条查询结果,搜索用时 515 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is recognized as a multifunctional protein that is involved in Cl(-) secretion, as well as acting as a regulatory protein. In order for acid secretion to take place a complex interaction of transport proteins and channels must occur at the apical pole of the parietal cell. Included in this process is at least one K(+) and Cl(-) channel, allowing for both recycling of K(+) for the H,K-ATPase, and Cl(-) secretion, necessary for the generation of concentrated HCl in the gastric gland lumen. We have previously shown that an ATP-sensitive potassium channel (K(ATP)) is expressed in parietal cells. In the present study we measured secretagogue-induced acid secretion from wild-type and DeltaF508-deficient mice in isolated gastric glands and whole stomach preparations. Secretagogue-induced acid secretion in wild-type mouse gastric glands could be significantly reduced with either glibenclamide or the specific inhibitor CFTR-inh172. In DeltaF508-deficient mice, however, histamine-induced acid secretion was significantly less than in wild-type mice. Furthermore, immunofluorescent localization of sulfonylurea 1 and 2 failed to show expression of a sulfonylurea receptor in the parietal cell, thus further implicating CFTR as the ATP-binding cassette transporter associated with the K(ATP) channels. These results demonstrate a regulatory role for the CFTR protein in normal gastric acid secretion.  相似文献   
2.
The gastric H+,K+-ATPase of the parietal cell is responsible for acid secretion in the stomach and is the main target in the pharmacological treatment of acid-related diseases. Omeprazole and other benzimidazole drugs, although having delayed efficacy if taken orally, have high success rates in the treatment of peptic ulcer disease. Potassium competitive acid blockers (P-CAB) compete with K+ for binding to the H+,K+-ATPase and thereby they inhibit acid secretion. In this study, the in vitro properties of AZD0865, a reversible H+,K+-ATPase inhibitor of gastric acid secretion, are described. We used a digital-imaging system and the pH sensitive dye BCECF to observe proton efflux from hand-dissected rat gastric glands. Glands were stimulated with histamine (100 microM) and exposed to a bicarbonate- and Na+-free perfusate to induce an acid load. H+,K+-ATPase inhibition was determined by calculating pHi recovery (dpH/dT) in the presence of omeprazole (10-200 microM) or AZD0865 (0.01-100 microM). The efficacies of both drugs were compared. Our data show that acid secretion is inhibited by both the proton pump inhibitor omeprazole and the P-CAB AZD0865. Complete inhibition of acid secretion by AZD0865 had a rapid onset of activation, was reversible, and occurred at a 100-fold lower dose than omeprazole (1 microM AZD0865 vs. 100 microM omeprazole). This study demonstrates that AZD0865 is a potent, fast-acting inhibitor of gastric acid secretion, effective at lower concentrations than drugs of the benzimidazole class. Therefore, these data strongly suggest that AZD0865 has great potential as a fast-acting, low-dose inhibitor of acid secretion.  相似文献   
3.
ABSTRACT: BACKGROUND: There is evidence to suggest that delivery of diabetes self-management support by diabetes educators in primary care may improve patient care processes and patient clinical outcomes; however, the evaluation of such a model in primary care is nonexistent in Canada. This article describes the design for the evaluation of the implementation of Mobile Diabetes Education Teams (MDETs) in primary care settings in Canada. METHODS: This study will have a non-blinded, cluster-randomized controlled trial stepped wedge design. A cluster, randomized controlled trial will be used to evaluate the Mobile Diabetes Education Teams' intervention in improving patient clinical and care process outcomes. A total of 1,200 patient charts at participating primary care sites will be reviewed for data extraction. Eligible patients will be those aged >=18, who have type 2 diabetes and a hemoglobin A1c (HbA1c) of >=8 %. Clusters (that is, primary care sites) will be randomized to the intervention and control group using a block randomization procedure within practice size as the blocking factor. A stepped wedge design will be used to sequentially roll out the intervention so that all clusters eventually receive the intervention. The time at which each cluster begins the intervention is randomized to one of the four roll out periods (0, 6, 12, and 18 months). Clusters that are randomized into the intervention later will act as the control for those receiving the intervention earlier. The primary outcome measure will be the difference in the proportion of patients who achieve the recommended HbA1c target of <=7 % between intervention and control groups. Qualitative work (in-depth interviews with primary care physicians, MDET educators and patients; and MDET educators' field notes and debriefing sessions) will be undertaken to assess the implementation process and effectiveness of the MDET intervention.Trial registrationClinicalTrials.gov NCT01553266.  相似文献   
4.
BACKGROUND: Previous work has led to the hypothesis that cofilin severing, as regulated by PLC, is involved in chemotactic sensing. We have tested this hypothesis by investigating whether activation of endogenous cofilin is spatially and temporally linked to sensing an EGF point source in carcinoma cells. RESULTS: We demonstrate that inhibition of endogenous cofilin activity with either siRNA or overexpression of LIMK suppresses directional sensing in carcinoma cells. LIMK siRNA knockdown, which suppresses cofilin phosphorylation, and microinjection of S3C cofilin, a cofilin mutant that is constitutively active and not phosphorylated by LIMK, also inhibits directional sensing and chemotaxis. These results indicate that phosphorylation of cofilin by LIMK, in addition to cofilin activity, is required for chemotaxis. Cofilin activity concentrates rapidly at the newly formed leading edge facing the gradient, whereas cofilin phosphorylation increases throughout the cell. Quantification of these results indicates that the amplification of asymmetric actin polymerization required for protrusion toward the EGF gradient occurs at the level of cofilin but not at the level of PLC activation by EGFR. CONCLUSIONS: These results indicate that local activation of cofilin by PLC and its global inactivation by LIMK phosphorylation combine to generate the local asymmetry of actin polymerization required for chemotaxis.  相似文献   
5.

Background

Current healthcare systems have extended the evidence-based medicine (EBM) approach to health policy and delivery decisions, such as access-to-care, healthcare funding and health program continuance, through attempts to integrate valid and reliable evidence into the decision making process. These policy decisions have major impacts on society and have high personal and financial costs associated with those decisions. Decision models such as these function under a shared assumption of rational choice and utility maximization in the decision-making process.

Discussion

We contend that health policy decision makers are generally unable to attain the basic goals of evidence-based decision making (EBDM) and evidence-based policy making (EBPM) because humans make decisions with their naturally limited, faulty, and biased decision-making processes. A cognitive information processing framework is presented to support this argument, and subtle cognitive processing mechanisms are introduced to support the focal thesis: health policy makers' decisions are influenced by the subjective manner in which they individually process decision-relevant information rather than on the objective merits of the evidence alone. As such, subsequent health policy decisions do not necessarily achieve the goals of evidence-based policy making, such as maximizing health outcomes for society based on valid and reliable research evidence.

Summary

In this era of increasing adoption of evidence-based healthcare models, the rational choice, utility maximizing assumptions in EBDM and EBPM, must be critically evaluated to ensure effective and high-quality health policy decisions. The cognitive information processing framework presented here will aid health policy decision makers by identifying how their decisions might be subtly influenced by non-rational factors. In this paper, we identify some of the biases and potential intervention points and provide some initial suggestions about how the EBDM/EBPM process can be improved.  相似文献   
6.
Excessive gastric acid secretion plays an important role in the pathogenesis of peptic ulcers. Dexamethasone, a widely used drug, is known to stimulate gastric acid secretion and increase the incidence of peptic ulcers. However little is known about the mechanism of the dexamethasone's effect on parietal cells. The present study was performed to investigate the contribution of the phosphatidylinositol-3-kinase (PI3 kinase) to dexamethasone induced stimulation of gastric acid secretion. In vivo pretreatment with dexamethasone injections (150 microg/100g for 3 days) or in vitro exposure to (10 microM for > 20 minutes) significantly increased acid secretion in isolated gastric glands approximately 2-3 fold. The dexamethasone induced stimulation of gastric acid secretion was concentration dependent and significantly blunted by the H+/K2+ ATPase inhibitor omeprazole (200 microM), the PI3 kinase inhibitor Wortmannin (500 nM), the protein kinase inhibitor staurosporine (2.5 microM) and the Cl(-) channel blocker NPPB (100 microM); but not by the H(2) antagonist cimetidine (100 microM). In conclusion, it was observed that dexamethasone's effect on proton extrusion requires the activity of a PI3 kinase pathway, an apical Cl(-) channel and the H2+/K2+ ATPase.  相似文献   
7.
We have investigated the effects of inhibiting the expression of cofilin to understand its role in protrusion dynamics in metastatic tumor cells, in particular. We show that the suppression of cofilin expression in MTLn3 cells (an apolar randomly moving amoeboid metastatic tumor cell) caused them to extend protrusions from only one pole, elongate, and move rectilinearly. This remarkable transformation was correlated with slower extension of fewer, more stable lamellipodia leading to a reduced turning frequency. Hence, the loss of cofilin caused an amoeboid tumor cell to assume a mesenchymal-type mode of movement. These phenotypes were correlated with the loss of uniform chemotactic sensitivity of the cell surface to EGF stimulation, demonstrating that to chemotax efficiently, a cell must be able to respond to chemotactic stimulation at any region on its surface. The changes in cell shape, directional migration, and turning frequency were related to the re-localization of Arp2/3 complex to one pole of the cell upon suppression of cofilin expression.  相似文献   
8.
Cofilin is a key player in actin dynamics during cell migration. Its activity is regulated by (de)phosphorylation, pH, and binding to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Here, we here use a human cofilin-1 (D122K) mutant with increased binding affinity for PI(4,5)P2 and slower release from the plasma membrane to study the role of the PI(4,5)P2–cofilin interaction in migrating cells. In fibroblasts in a background of endogenous cofilin, D122K cofilin expression negatively affects cell turning frequency. In carcinoma cells with down-regulated endogenous cofilin, D122K cofilin neither rescues the drastic morphological defects nor restores the effects in cell turning capacity, unlike what has been reported for wild-type cofilin. In cofilin knockdown cells, D122K cofilin expression promotes outgrowth of an existing lamellipod in response to epidermal growth factor (EGF) but does not result in initiation of new lamellipodia. This indicates that, next to phospho- and pH regulation, the normal release kinetics of cofilin from PI(4,5)P2 is crucial as a local activation switch for lamellipodia initiation and as a signal for migrating cells to change direction in response to external stimuli. Our results demonstrate that the PI(4,5)P2 regulatory mechanism, that is governed by EGF-dependent phospholipase C activation, is a determinant for the spatial and temporal control of cofilin activation required for lamellipodia initiation.  相似文献   
9.
We examined the role of the actin nucleation promoters neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE2 in cell protrusion in response to epidermal growth factor (EGF), a key regulator in carcinoma cell invasion. We found that WAVE2 knockdown (KD) suppresses lamellipod formation and increases filopod formation, whereas N-WASP KD has no effect. However, simultaneous KD of both proteins results in the formation of large jagged protrusions with lamellar properties and increased filopod formation. This suggests that another actin nucleation activity is at work in carcinoma cells in response to EGF. A mammalian Diaphanous-related formin, mDia1, localizes at the jagged protrusions in double KD cells. Constitutively active mDia1 recapitulated the phenotype, whereas inhibition of mDia1 blocked the formation of these protrusions. Increased RhoA activity, which stimulates mDia1 nucleation, was observed in the N-WASP/WAVE2 KD cells and was shown to be required for the N-WASP/WAVE2 KD phenotype. These data show that coordinate regulation between the WASP family and mDia proteins controls the balance between lamellar and lamellipodial protrusion activity.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号