首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   4篇
  1998年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1983年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Osteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an anabolic factor that can counteract many IL-1-induced effects. In old mice, we observed reduced responsiveness to TGF-beta-induced IL-1 counteraction. We investigated whether expression of TGF-beta and its signaling molecules altered with age. To mimic the TGF-beta deprived conditions in aged mice, we assessed the functional consequence of TGF-beta blocking. We isolated knee joints of mice aged 5 months or 2 years, half of which were exposed to IL-1 by intra-articular injection 24 h prior to knee joint isolation. Immunohistochemistry was performed, staining for TGF-beta1, -2 or -3, TGF-betaRI or -RII, Smad2, -3, -4, -6 and -7 and Smad-2P. The percentage of cells staining positive was determined in tibial cartilage. To mimic the lack of TGF-beta signaling in old mice, young mice were injected with IL-1 and after 2 days Ad-LAP (TGF-beta inhibitor) or a control virus were injected. Proteoglycan (PG) synthesis (35S-sulfate incorporation) and PG content of the cartilage were determined. Our experiments revealed that TGF-beta2 and -3 expression decreased with age, as did the TGF-beta receptors. Although the number of cells positive for the Smad proteins was not altered, the number of cells expressing Smad2P strongly dropped in old mice. IL-1 did not alter the expression patterns. We mimicked the lack of TGF-beta signaling in old mice by TGF-beta inhibition with LAP. This resulted in a reduced level of PG synthesis and aggravation of PG depletion. The limited response of old mice to TGF-beta induced-IL-1 counteraction is not due to a diminished level of intracellular signaling molecules or an upregulation of intracellular inhibitors, but is likely due to an intrinsic absence of sufficient TGF-beta receptor expression. Blocking TGF-beta distorted the natural repair response after IL-1 injection. In conclusion, TGF-beta appears to play an important role in repair of cartilage and a lack of TGF-beta responsiveness in old mice might be at the root of OA development.  相似文献   
2.
Primary stability of artificial acetabular cups, used for total hip arthroplasty, is required for the subsequent osteointegration and good long-term clinical results of the implant. Although closed-cell polymer foams represent an adequate bone substitute in experimental studies investigating primary stability, correct numerical modelling of this material depends on the parameter selection. Material parameters necessary for crushable foam plasticity behaviour were originated from numerical simulations matched with experimental tests of the polymethacrylimide raw material. Experimental primary stability tests of acetabular press-fit cups consisting of static shell assembly with consecutively pull-out and lever-out testing were subsequently simulated using finite element analysis. Identified and optimised parameters allowed the accurate numerical reproduction of the raw material tests. Correlation between experimental tests and the numerical simulation of primary implant stability depended on the value of interference fit. However, the validated material model provides the opportunity for subsequent parametric numerical studies.  相似文献   
3.
4.
5.
6.
When large defects occur, bone regeneration can be supported by bone grafting and biophysical stimuli like electric and magnetic stimulation (EMS). Clinically established EMS modes are external coils and surgical implants like an electroinductive screw system, which combines a magnetic and electric field, e.g., for the treatment of avascular bone necrosis or pseudarthrosis. For optimization of this implant system, an in vitro test setup was designed to investigate effects of EMS on human osteoblasts on different 3D scaffolds (based on calcium phosphate and collagen). Prior to the cell experiments, numerical simulations of the setup, as well as experimental validation, via measurements of the electric parameters induced by EMS were conducted. Human osteoblasts (3 × 105 cells) were seeded onto the scaffolds and cultivated. After 24 h, screw implants (Stryker ASNIS III s-series) were centered in the scaffolds, and EMS was applied (3 × 45 min per day at 20 Hz) for 3 days. Cell viability and collagen type 1 (Col1) synthesis were determined subsequently. Numerical simulation and validation showed an adequate distribution of the electric field within the scaffolds. Experimental measurements of the electric potential revealed only minimal deviation from the simulation. Cell response to stimulation varied with scaffold material and mode of stimulation. EMS-stimulated cells exhibited a significant decrease of metabolic activity in particular on collagen scaffolds. In contrast, the Col1/metabolic activity ratio was significantly increased on collagen and non-sintered calcium phosphate scaffolds after 3 days. Exclusive magnetic stimulation showed similar but nonsignificant tendencies in metabolic activity and Col1 synthesis. The cell tests demonstrate that the new test setup is a valuable tool for in vitro testing and parameter optimization of the clinically used electroinductive screw system. It combines magnetic and electric stimulation, allowing in vitro investigations of its influence on human osteoblasts.  相似文献   
7.
1. The effect of ornithine (2.0 mM) and propionate (5.0 mM) on the utilization of N from 15NH4Cl (5.0 mM) for urea synthesis in hepatocytes isolated from sheep liver was investigated. 2. The capacity of sheep hepatocytes to utilize [15N]ammonia in the absence of the other exogenous substrates was very low and amounted 132 +/- 37.3 mumol/hr per 1 g dry wt. 3. Ornithine failed to affect the total [15N]ammonia uptake and total urea synthesis, but at the same time it markedly increased the utilization of [15N]ammonia for ureagenesis and diminished the rate of urea synthesis from endogenous sources. 4. Propionate markedly increased total [15N]ammonia utilization and total urea formation; this increase resulted from the rise of ammonia utilization for urea synthesis and it was similar in the presence or absence of ornithine. 5. The capacity of sheep liver cells to utilize ammonia in the presence of propionate (in the presence or absence of ornithine) amounted to 256 mumol/hr per 1 g dry wt, thus being similar to the values in vivo. 6. It is concluded that in sheep hepatocytes both ornithine and propionate stimulate the utilization of ammonia for urea synthesis and these effects take place independently and occur by different mechanisms.  相似文献   
8.
Weaning triggers an adaptation of the gut function including luminal lactate generation by lactobacilli, depending on gastrointestinal site. We hypothesized that both lactobacilli and lactate influence porcine intestinal epithelial cells. In vivo experiments showed that concentration of lactate was significantly higher in gastric, duodenal and jejunal chyme of suckling piglets compared to their weaned counterparts. In an in vitro study we investigated the impact of physiological lactate concentration as derived from the in vivo study on the porcine intestinal epithelial cells IPEC-1 and IPEC-J2. We detected direct adherence of lactobacilli on the apical epithelial surface and a modulated F-actin structure. Application of lactobacilli culture supernatant alone or lactate (25 mM) at low pH (pH 4) changed the F-actin structure in a similar manner. Treatment of IPEC cultures with lactate at near neutral pH resulted in a significantly reduced superoxide-generation in Antimycin A-challenged cells. This protective effect was nearly completely reversed by inhibition of cellular lactate uptake via monocarboxylate transporter. Lactate treatment enhanced NADH autofluorescence ratio (Fcytosol/Fnucleus) in non-challenged cells, indicating an increased availability of reduced nucleotides, but did not change the overall ATP content of the cells. Lactobacilli-derived physiological lactate concentration in intestine is relevant for alleviation of redox stress in intestinal epithelial cells.  相似文献   
9.
The metabolic fate of nitrogen from 15N-labeled sodium nitrate has been investigated in four healthy Polish Merino ewes. 15N-labeled sodium nitrate was administered intravenously at the dosage of 400 micromol.kg(-1) body weight. Blood plasma and urine concentrations of nitrate, ammonia, and urea and 15N enrichment of ammonia and urea were estimated over a 50-h period following 15N-nitrate administration. Nitrate (NO3-) was slowly eliminated from the blood plasma, and the presence of NO3(-) in the blood plasma above the nitrate "background" was observed for 50 h. 15N enrichment of blood plasma urea already appeared at 15 min and reached the maximum 6 h after 15N-nitrate administration. The urinary excretion of nitrate occured during 50 h after 15N-nitrate injection; the total urine excretion of NO3(-) was 23.63+/-2.39% of the administered dose. The mean urinary recoveries of nitrogen as 15N-urea and 15N-ammonia were 14.76+/-1.32% and 0.096+/-0.015% of the administered 15N-nitrate dose, respectively. It should be pointed out that in total only 38.49% of the administered nitrate-N was excreted in urine (as nitrate, ammonia and urea nitrogen) during 50 h. The results obtained indicate that sheep are able to store nitrate nitrogen in their body. The fate of the remaining approximately 60% of the 15NO3(-) administered dose is unknown. The results obtained do not allow one to conclude what fraction of the unrecovered approximately 60% of the 15NO3(-) dose was utilized by gastrointestinal microorganisms, and (or) metabolized, or stored in sheep tissues.  相似文献   
10.
Sperm chromatin integrity is essential for accurate transmission of male genetic information, and normal sperm chromatin structure is important for fertilization. Protamine is a nuclear protein that plays a key role in sperm DNA integrity, because it is responsible for sperm DNA stability and packing until the paternal genome is delivered into the oocyte during fertilization. Our aim was to investigate protamine deficiency in sperm cells of Bos indicus bulls (Nelore) using chromomycin A3 (CMA3) staining. Frozen semen from 14 bulls were thawed, then fixed in Carnoy's solution. Smears were prepared and analyzed by microscopy. As a positive control of CMA3 staining, sperm from one bull was subjected to deprotamination of nuclei. The percentage of CMA3-positive bovine sperm did not vary among batches. Only two bulls showed a higher percentage of CMA3-positive sperm cells compared to the others. CMA3 is a simple and useful tool for detecting sperm protamine deficiency in bulls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号