首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   10篇
  2022年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   7篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1988年   2篇
  1983年   1篇
  1977年   1篇
  1964年   1篇
排序方式: 共有80条查询结果,搜索用时 62 毫秒
1.
Gametophytic competition among pollen grains has been proposed as an important mechanism of sexual selection in plants. The purpose of this paper is to examine the contribution of pollen source on in vivo pollen tube growth in Chamaecrista fasciculata. We addressed two questions: 1) Is pollen tube growth affected by the genetic relatedness between the pollen source and the pollen recipient? 2) Is there significant phenotypic variation among pollen donors for pollen tube growth? We compared pollen tube growth by measuring the number of pollen tubes which germinated, reached quarter length of style, and reached the ovary resulting from self- and outcross-pollinations. The outcross pollinations included three interplant distance classes: near (within genetic neighborhood, ca. 1 m), far (between far neighborhoods and within subpopulation, ca. 20 m), and distant (between neighborhoods and adjacent subpopulations, ca. 50–100 m). Our results show that pollen tube growth was not affected by genetic relatedness, by differences between self and outcross, nor by differences due to phenotypic variation among pollen donors. In contrast, maternal environment had a strong impact on pollen tube growth. These results suggest a lack of gametophytic competition and indicate little opportunity for sexual selection on pollen tube growth in C. fasciculata.  相似文献   
2.
A road map for molecular ecology   总被引:1,自引:0,他引:1  
The discipline of molecular ecology has undergone enormous changes since the journal bearing its name was launched approximately two decades ago. The field has seen great strides in analytical methods development, made groundbreaking discoveries and experienced a revolution in genotyping technology. Here, we provide brief perspectives on the main subdisciplines of molecular ecology, describe key questions and goals, discuss common challenges, predict future research directions and suggest research priorities for the next 20 years.  相似文献   
3.
4.
5.
Drought is a major stress for plants, creating a strong selection pressure for traits that enable plant growth and survival in dry environments. Many drought responses are conserved species‐wide responses, while others vary among populations distributed across heterogeneous environments. We tested how six populations of the widely distributed California valley oak (Quercus lobata) sampled from contrasting climates would differ in their response to soil drying relative to well‐watered controls in a common environment by measuring ecophysiological traits in 93 individuals and gene expression (RNA‐seq) in 42 individuals. Populations did not differ in their adjustment of turgor loss point during soil drying, suggesting a generalized species‐wide response. Differential expression analysis identified 689 genes with a common response to treatment across populations and 470 genes with population‐specific responses. Weighted gene co‐expression network analysis (WGCNA) identified groups of genes with similar expression patterns that may be regulated together (gene modules). Several gene modules responded differently to water stress among populations, suggesting regional differences in gene network regulation. Populations from sites with a high mean annual temperature responded to the imposed water stress with significantly greater changes in gene module expression, indicating that these populations may be locally adapted to respond to drought. We propose that this variation among valley oak populations provides a mechanism for differential tolerance to the increasingly frequent and severe droughts in California.  相似文献   
6.

Background  

Several cell lines and primary cultures benefit from the use of positively charged extracellular matrix proteins or polymers that enhance their ability to attach to culture plates. Polyethyleneimine is a positively charged polymer that has gained recent attention as a transfection reagent. A less known use of this cationic polymer as an attachment factor was explored with several cell lines.  相似文献   
7.
Pollen dispersal is a critical process that shapes genetic diversity in natural populations of plants. Estimating the pollen dispersal curve can provide insight into the evolutionary dynamics of populations and is essential background for making predictions about changes induced by perturbations. Specifically, we would like to know whether the dispersal curve is exponential, thin-tailed (decreasing faster than exponential), or fat-tailed (decreasing slower than the exponential). In the latter case, rare events of long-distance dispersal will be much more likely. Here we generalize the previously developed TWOGENER method, assuming that the pollen dispersal curve belongs to particular one- or two-parameter families of dispersal curves and estimating simultaneously the parameters of the dispersal curve and the effective density of reproducing individuals in the population. We tested this method on simulated data, using an exponential power distribution, under thin-tailed, exponential and fat-tailed conditions. We find that even if our estimates show some bias and large mean squared error (MSE), we are able to estimate correctly the general trend of the curve - thin-tailed or fat-tailed - and the effective density. Moreover, the mean distance of dispersal can be correctly estimated with low bias and MSE, even if another family of dispersal curve is used for the estimation. Finally, we consider three case studies based on forest tree species. We find that dispersal is fat-tailed in all cases, and that the effective density estimated by our model is below the measured density in two of the cases. This latter result may reflect the difficulty of estimating two parameters, or it may be a biological consequence of variance in reproductive success of males in the population. Both the simulated and empirical findings demonstrate the strong potential of TWOGENER for evaluating the shape of the dispersal curve and the effective density of the population (d(e)).  相似文献   
8.
Mast seeding, or masting, is the variable production of flowers, seeds, or fruit across years more or less synchronously by individuals within a population. A critical issue is the extent to which temporal variation in seed production over a collection of individuals can be viewed as arising from a combination of individual variation and synchrony among individuals. Studies of masting typically quantify such variation in terms of the coefficient of variation (CV). In this paper we examine mathematically how the population CV relates to the mean individual CV and synchrony, concluding that the relationship is a complex one which cannot isolate an overall measure of synchrony, and involves additional factors, principally the number of plants sampled and the mean productivity per plant. Our development suggests some simple approximate relationships of population CV to individual variability, synchrony and the number of individuals. These were found to fit quite well when applied to data from 59 studies which included seed production at the individual level.  相似文献   
9.
Dyer RJ  Sork VL 《Molecular ecology》2001,10(4):859-866
Pollen is the dominant vector of gamete exchange for most temperate tree species. Because pollen movement influences the creation, maintenance and erosion of genetic structure in adult populations, it is important to understand what factors influence the process of pollen movement. Isolation by distance in pollen donor populations can create highly structured pollen polls by increased sampling of local fathers. Extrinsic factors, such as the intervening vegetative structure and local pollen donor densities, can also influence the genetic composition of local pollen pools. Using paternally inherited chloroplast microsatellite markers, we examined the structure and diversity of pollen pools in Pinus echinata Mill. in southern Missouri, USA. Our analysis is based on a multivariate AMOVA analysis of stands ( approximately 1 ha; six per region) nested within regions (approximately 800 ha; four each). Significant multilocus structure of the pollen pool within regions (phiSR = 0.095), but not among regions (phiRT = 0.010), indicates that pollen movement is relatively restricted. Furthermore, the significant correlation between pairwise genetic and physical distances (Mantel correlation; rho = 0.32) provided support for the isolation by distance hypothesis. Our results indicated that availability of pollen donors did not affect diversity of the pollen pool, measured by the number of unique multilocus genotypes at each stand. However, pollen pool diversity was negatively associated with vegetative structure, measured as total forest tree density. Our findings indicated that on-going pollen movement within continuous forest is relatively restricted as a result of both isolation by distance and vegetative structure.  相似文献   
10.
The aims of the present study were to investigate the relationship of aerobic and anaerobic parameters with 400 m performance, and establish which variable better explains long distance performance in swimming. Twenty-two swimmers (19.1±1.5 years, height 173.9±10.0 cm, body mass 71.2±10.2 kg; 76.6±5.3% of 400 m world record) underwent a lactate minimum test to determine lactate minimum speed (LMS) (i.e., aerobic capacity index). Moreover, the swimmers performed a 400 m maximal effort to determine mean speed (S400m), peak oxygen uptake (V.O2PEAK) and total anaerobic contribution (CANA). The CANA was assumed as the sum of alactic and lactic contributions. Physiological parameters of 400 m were determined using the backward extrapolation technique (V.O2PEAK and alactic contributions of CANA) and blood lactate concentration analysis (lactic anaerobic contributions of CANA). The Pearson correlation test and backward multiple regression analysis were used to verify the possible correlations between the physiological indices (predictor factors) and S400m (independent variable) (p < 0.05). Values are presented as mean ± standard deviation. Significant correlations were observed between S400m (1.4±0.1 m·s-1) and LMS (1.3±0.1 m·s-1; r = 0.80), V.O2PEAK (4.5±3.9 L·min-1; r = 0.72) and CANA (4.7±1.5 L·O2; r= 0.44). The best model constructed using multiple regression analysis demonstrated that LMS and V.O2PEAK explained 85% of the 400 m performance variance. When backward multiple regression analysis was performed, CANA lost significance. Thus, the results demonstrated that both aerobic parameters (capacity and power) can be used to predict 400 m swimming performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号