首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   2篇
  119篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   7篇
  2015年   11篇
  2014年   9篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   12篇
  2009年   6篇
  2008年   10篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1987年   1篇
  1970年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.

Background

Osteosarcoma is the most common primary malignant bone tumour in children and young adults. Despite advances in the diagnosis and management of osteosarcoma, there have been few recent studies describing the experiences of tertiary referral centres. This paper aims to describe and discuss the clinical features, pre-operative work-up, management and outcomes of these patients at St Vincent's Hospital (Melbourne, Australia).

Methods

Retrospective study of fifty-nine consecutive patients managed for osteosarcoma at St Vincent's Hospital between 1995 and 2005.

Results

Median age at diagnosis was 21 (range, 11–84) years. Gender distribution was similar, with thirty-one male and twenty-eight female patients.Twenty-five patients had osteosarcoma in the femur, eleven each were located in the humerus and tibia, six were identified in the pelvis, and one each in the clavicle, maxilla, fibula, sacrum, ulna and radius.Pre-operative tissue diagnosis of osteosarcoma was obtained through computed tomography-guided percutaneous biopsy in over ninety percent of patients.Following initial therapy, over fifty percent of patients remained relapse-free during the follow-up period, with twelve percent and twenty-seven percent of patients documented as having local and distant disease recurrence, respectively. Of patients with recurrent disease, sixty-two percent remained disease-free following subsequent surgical intervention (most commonly, pulmonary metastatectomy).

Conclusion

Patient outcomes can be optimised through a multidisciplinary approach in a tertiary referral centre. At St Vincent's Hospital, survival and relapse rates of patients managed for osteosarcoma compare favourably with the published literature.
  相似文献   
2.
Leprosy is an infectious and contagious spectral disease accompanied by a series of immunological events triggered by the host response to the aetiologic agent, Mycobacterium leprae . The induction and maintenance of the immune/inflammatory response in leprosy are linked to multiple cell interactions and soluble factors, primarily through the action of cytokines. The purpose of the present study was to evaluate the serum levels of tumour necrosis factor (TNF)-α and its soluble receptors (sTNF-R1 and sTNF-R2) in leprosy patients at different stages of multidrug treatment (MDT) in comparison with non-infected individuals and to determine their role as putative biomarkers of the severity of leprosy or the treatment response. ELISA was used to measure the levels of these molecules in 30 healthy controls and 37 leprosy patients at the time of diagnosis and during and after MDT. Our results showed increases in the serum levels of TNF-α and sTNF-R2 in infected individuals in comparison with controls. The levels of TNF-α, but not sTNF-R2, decreased with treatment. The current results corroborate previous reports of elevated serum levels of TNF-α in leprosy and suggest a role for sTNF-R2 in the control of this cytokine during MDT.  相似文献   
3.
Irisin was first identified in muscle cells. We detected irisin immunoreactivity in various organs of the crested porcupine (Hystrix cristata). In the epidermis, irisin immunoreactivity was localized mainly in stratum basale, stratum spinosum and stratum granulosum layers; immunoreactivity was not observed in the stratum corneum. In the dermis, irisin was found in the external and internal root sheath, cortex and medulla of hair follicles, and in sebaceous glands. Irisin immunoreactivity was found in the neural retina and skeletal muscle fibers associated with the eye. The pineal and thyroid glands also exhibited irisin immunoreactivity.  相似文献   
4.
5.
A data set of complete mitochondrial cytochrome b and 12S rDNA sequences is presented here for 17 representatives of Artiodactyla and Cetacea, together with potential outgroups (two Perissodactyla, two Carnivora, two Tethytheria, four Rodentia, and two Marsupialia). We include seven sequences not previously published from Hippopotamidae (Ancodonta) and Camelidae (Tylopoda), yielding a total of nearly 2.1 kb for both genes combined. Distance and parsimony analyses of each gene indicate that 11 clades are well supported, including the artiodactyl taxa Pecora, Ruminantia (with low 12S rRNA support), Tylopoda, Suina, and Ancodonta, as well as Cetacea, Perissodactyla, Carnivora, Tethytheria, Muridae, and Caviomorpha. Neither the cytochrome b nor the 12S rDNA genes resolve the relationships between these major clades. The combined analysis of the two genes suggests a monophyletic Cetacea +Artiodactyla clade (defined as "Cetartiodactyla"), whereas Perissodactyla, Carnivora, and Tethytheria fall outside this clade. Perissodactyla could represent the sister taxon of Cetartiodactyla, as deduced from resampling studies among outgroup lineages. Cetartiodactyla includes five major lineages: Ruminantia, Tylopoda, Suina, Ancodonta, and Cetacea, among which the phylogenetic relationships are not resolved. Thus, Suiformes do not appear to be monophyletic, justifying their split into the Suina and Ancodonta infraorders. An association between Cetacea and Hippopotamidae is supported by the cytochrome b gene but not by the 12S rRNA gene. Calculation of divergence dates suggests that the Cetartiodactyla could have diverged from other Ferungulata about 60 MYA.   相似文献   
6.
New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called “Protectome space,” and using such “protective signatures” for protective antigen discovery. In particular, we applied this new approach to Staphylococcus aureus and Group B Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.Although vaccines based on attenuated pathogens as pioneered by Luis Pasteur have been shown to be extremely effective, safety and technical reasons recommend that new generation vaccines include few selected pathogen components which, in combination with immunostimulatory molecules, can induce long lasting protective responses. Such approach implies that the key antigens sufficient to confer protective immunity are singled out among the plethora of pathogen molecules. As it turns out, the search for such protective antigens can be extremely complicated.Genomic technologies have opened the way to new strategies in vaccine antigen discovery (1, 2, 3). Among them, Reverse Vaccinology (RV)1 has proved to be highly effective, as demonstrated by the fact that a new Serogroup B Neisseria meningitidis (MenB) vaccine, incorporating antigens selected by RV, is now available to defeat meningococcal meningitis (4, 5). In essence, RV is based on the simple assumption that cloning all annotated proteins/genes and screening them against a robust and reliable surrogate-of-protection assay must lead to the identification of all protective antigens. Because most of the assays available for protective antigen selection involve animal immunization and challenge, the number of antigens to be tested represents a severe bottleneck of the entire process. For this reason, despite the fact that RV is a brute force, inclusive approach (“test-all-to-lose-nothing” type of approach) in their pioneered work of MenB vaccine discovery, Pizza and co-workers did not test the entire collection of MenB proteins but rather restricted their analysis to the ones predicted to be surface-localized. This was based on the evidence that for an anti-MenB vaccine to be protective bactericidal antibodies must be induced, a property that only surface-exposed antigens have. For the selection of surface antigens Pizza and co-workers mainly used PSORT and other available tools like MOTIFS and FINDPATTERNS to find proteins carrying localization-associated features such as transmembrane domains, leader peptides, and lipobox and outer membrane anchoring motifs. At the end, 570 proteins were selected and entered the still very labor intensive screening phase. Over the last few years, our laboratories have been trying to move to more selective strategies. Our ultimate goal, we like to refer to as the “Holy Grail of Vaccinology,” is to identify protective antigens by “simply” scanning the genome sequence of any given pathogen, thus avoiding time consuming “wet science” and “move straight from genome to the clinic” (6).With this objective in mind, we have developed a series of proteomics-based protocols that, in combination with bioinformatics tools, have substantially reduced the number of antigens to be tested in the surrogate-of-protection assays (7, 8). In particular, we have recently described a three-technology strategy that allows to narrow the number of antigens to be tested in the animal models down to less than ten (9). However, this strategy still requires high throughput experimental activities. Therefore, the availability of in silico tools that selectively and accurately single out relevant categories of antigens among the complexity of pathogen components would greatly facilitate the vaccine discovery process.In the present work, we describe a new bioinformatics approach that brings an additional contribution to our “from genome to clinic” goal. The approach has been developed on the basis of the assumption that protective antigens are protective in that they have specific structural/functional features (“protective signatures”) that distinguish them from immunologically irrelevant pathogen components. These features have been identified by using existing databases and prediction tools, such as PFam and SMART. Our approach focuses on protein biological role rather than its localization: it is completely protein localization unbiased, and lead to the identification of both surface-exposed and secreted antigens (which are the majority in extracellular bacteria) as well as cytoplasmic protective antigens (for instance, antigens that elicit interferon γ producing CD4+ T cells, thus potentiating the killing activity of phagocytic cells toward intracellular pathogens). Should these assumptions be valid, PS could be identified if: (1) all known protective antigens are compiled to create what we refer to as “the Protectome space,” and (2) Protectome is subjected to computer-assisted scrutiny using selected tools. Once signatures are identified, novel protective antigens of a pathogen of interest should be identifiable by scanning its genome sequence in search for proteins that carry one or more protective signatures. A similar attempt has been reported (10), where the discrimination of protective antigens versus nonprotective antigens was tried using statistical methods based on amino acid compositional analysis and auto cross-covariance. This model was implemented in a server for the prediction of vaccine candidates, that is, Vaxijen (www.darrenflower.info/Vaxijen); however, the selection criteria applied are still too general leading to a list of candidates that include ca. 30% of the total genome ORFs very similarly to the number of antigens predicted by classical RV based on the presence of localization signals.Here we show that Protectome analysis unravels specific signatures embedded in protective antigens, most of them related to the biological role/function of the proteins. These signatures narrow down the candidate list to ca. 3% of the total ORFs content and can be exploited for protective antigen discovery. Indeed, the strategy was validated by demonstrating that well characterized vaccine components could be identified by scanning the genome sequence of the corresponding pathogens for the presence of the PS. Furthermore, when the approach was applied to Staphylococcus aureus and Streptococcus agalactiae (Group B Streptococcus, GBS) not only already known protective antigens were rediscovered, but also two new protective antigens were identified.  相似文献   
7.
Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.Bacterial lipoproteins (Lpps)1 are a subset of membrane proteins that are covalently modified with a lipidic moiety at their N-terminal cysteine residue. It is commonly reported that Lpps of Gram-positive bacteria are processed by two key enzymes; the prolipoprotein diacylglyceryl transferase (Lgt) and the lipoprotein signal peptidase (Lsp). The Lgt enzyme recognizes a so-called lipobox motif in the C-terminal region of the signal peptide of a premature lipoprotein and transfers a diacylglyceryl moiety to the cysteine residue of the lipobox (1), (2). Subsequently, the Lsp enzyme cleaves the signal peptide resulting in a mature Lpp (3), (4). Nevertheless, recent reports have suggested that N-acylation occurs in bacteria that lack the Gram-negative homologous apolipoprotein N-acyltransferase (Lnt) gene responsible for this modification (5, 6), and that Lpp N-terminal could also be modified with an acetyl group in some Gram-positive (7).Lpps have been described as virulence factors because they play critical roles in membrane stabilization, nutrient uptake, antibiotic resistance, bacterial adhesion to host cells, protein maturation and secretion and many of them still have unknown function (8). Several studies have suggested that bacterial Lpps are pathogen-associated molecular patterns (PAMPs) sensed by the mammalian host through Toll-like receptor 2 (TLR2) heterodimerized with TLR1 or TLR6 to induce innate immunity activation and to control adaptive immunity (912). TLR2 plays a critical role in the host response to the Gram-positive bacteria Staphylococcus aureus (13) and Streptococcus agalactiae (14). Although TLR2 has been considered a receptor for various structurally unrelated PAMPs, recent studies have suggested that, via their lipid moiety, bacterial Lpps function as the major, if not the sole, ligand molecules responsible for TLR2 activation (15). Although Gram-negative Lpps have been widely studied, little information is available for Gram-positive Lpps (16) and the ways they are released into the bacterial extracellular compartment and reach the host immune system remain unclear.We focused our attention on Lpps release by Streptococcus pyogenes. This Gram-positive bacterium is an important human pathogen that causes a wide range of diseases from superficial and self-limiting infection, e.g. pharyngitis and impetigo, to more systemic or invasive diseases like necrotizing fasciitis and septicemia (17). Understanding the role of bacterial Lpps in mediating innate and acquired immunity can be instrumental for the therapy and prophylaxis of human S. pyogenes infections. In this study, we showed that in S. pyogenes Lpps are released into the growth medium within vesicle-like structures in minute amounts. Conditions weakening the bacterial cell wall, such as the addition of sublethal concentrations of penicillin to the bacterial growth medium enhanced this phenomenon and allowed the recovery of sufficient material to enable an in-depth characterization. Proteomic analysis of the vesicles revealed that they were almost exclusively constituted of Lpps. A total of 28 Lpps were identified, representing more than 72% of the Lpps predicted from the genome of the strain under investigation. In addition, multiple transmembrane domain proteins were not found in abundance associated to the vesicles, indicating that vesicles were not representative of the bacterial membrane. We defined these vesicles as Lipoprotein-rich Membrane Vesicles (LMVs).Common characteristics are shared between the LMVs and the ExPortal described for the first time by Rosch and Caparon (18). This asymmetric and distinct membrane microdomain has been reported to be enriched in anionic phospholipids and acts in promoting the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and the accessory factors required for their maturation (1921). An association between ExPortal and peptidoglycan synthesis has also been reported (22). Similarly, LMVs are enriched in anionic phosphatidylglycerol, enzymes involved in protein maturation/secretion and cell wall biogenesis, suggesting that LMVs might derive from the ExPortal. Finally, we showed that LMVs do not induce TLR2 activation, indicating that the Lpps did not act as PAMPs when integrated into the LMVs.  相似文献   
8.
Carbon dioxide (CO2) and its hydration product bicarbonate (HCO3) are essential molecules in various physiological processes of all living organisms. The reversible interconversion between CO2 and HCO3 is in equilibrium. This reaction is slow without catalyst, but can be rapidly facilitated by Zn2+‐metalloenzymes named carbonic anhydrases (CAs). To gain an insight into the function of multiple clades of fungal CA, we chose to investigate the filamentous fungi Aspergillus fumigatus and A. nidulans. We identified four and two CAs in A. fumigatus and A. nidulans, respectively, named cafA‐D and canA‐B. The cafA and cafB genes are constitutively, strongly expressed whereas cafC and cafD genes are weakly expressed but CO2‐inducible. Heterologous expression of the A. fumigatus cafB, and A. nidulans canA and canB genes completely rescued the high CO2‐requiring phenotype of a Saccharomyces cerevisiaeΔnce103 mutant. Only the ΔcafAΔcafB and ΔcanB deletion mutants were unable to grow at 0.033% CO2, of which growth defects can be restored by high CO2. Defects in the CAs can affect Aspergilli conidiation. Furthermore, A. fumigatusΔcafA, ΔcafB, ΔcafC, ΔcafD and ΔcafAΔcafB mutant strains are fully virulent in a low‐dose murine infection.  相似文献   
9.
10.
Studies with inhibitors have implicated protein kinase C (PKC) in the adhesive functions of integrin alpha(IIb)beta(3) in platelets, but the responsible PKC isoforms and mechanisms are unknown. Alpha(IIb)beta(3) interacts directly with tyrosine kinases c-Src and Syk. Therefore, we asked whether alpha(IIb)beta(3) might also interact with PKC. Of the several PKC isoforms expressed in platelets, only PKC beta co-immunoprecipitated with alpha(IIb)beta(3) in response to the interaction of platelets with soluble or immobilized fibrinogen. PKC beta recruitment to alpha(IIb)beta(3) was accompanied by a 9-fold increase in PKC activity in alpha(IIb)beta(3) immunoprecipitates. RACK1, an intracellular adapter for activated PKC beta, also co-immunoprecipitated with alpha(IIb)beta(3), but in this case, the interaction was constitutive. Broad spectrum PKC inhibitors blocked both PKC beta recruitment to alpha(IIb)beta(3) and the spread of platelets on fibrinogen. Similarly, mouse platelets that are genetically deficient in PKC beta spread poorly on fibrinogen, despite normal agonist-induced fibrinogen binding. In a Chinese hamster ovary cell model system, adhesion to fibrinogen caused green fluorescent protein-PKC beta I to associate with alpha(IIb)beta(3) and to co-localize with it at lamellipodial edges. These responses, as well as Chinese hamster ovary cell migration on fibrinogen, were blocked by the deletion of the beta(3) cytoplasmic tail or by co-expression of a RACK1 mutant incapable of binding to beta(3). These studies demonstrate that the interaction of alpha(IIb)beta(3) with activated PKC beta is regulated by integrin occupancy and can be mediated by RACK1 and that the interaction is required for platelet spreading triggered through alpha(IIb)beta(3). Furthermore, the studies extend the concept of alpha(IIb)beta(3) as a scaffold for multiple protein kinases that regulate the platelet actin cytoskeleton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号