首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2014年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

Background

Current prophylactic vaccines against human papillomavirus (HPV) target two oncogenic types (16 and 18) that contribute to 70% of cervical cancer cases worldwide. Our objective was to quantify the range of additional benefits conferred by second-generation HPV prophylactic vaccines that are expected to expand protection to five additional oncogenic types (31, 33, 45, 52 and 58).

Methods

A microsimulation model of HPV and cervical cancer calibrated to epidemiological data from two countries (Kenya and Uganda) was used to estimate reductions in lifetime risk of cervical cancer from the second-generation HPV vaccines. We explored the independent and joint impact of uncertain factors (i.e., distribution of HPV types, co-infection with multiple HPV types, and unidentifiable HPV types in cancer) and vaccine properties (i.e., cross-protection against non-targeted HPV types), compared against currently-available vaccines.

Results

Assuming complete uptake of the second-generation vaccine, reductions in lifetime cancer risk were 86.3% in Kenya and 91.8% in Uganda, representing an absolute increase in cervical cancer reduction of 26.1% in Kenya and 17.9% in Uganda, compared with complete uptake of current vaccines. The range of added benefits was 19.6% to 29.1% in Kenya and 14.0% to 19.5% in Uganda, depending on assumptions of cancers attributable to multiple HPV infections and unidentifiable HPV types. These effects were blunted in both countries when assuming vaccine cross-protection with both the current and second-generation vaccines.

Conclusion

Second-generation HPV vaccines that protect against additional oncogenic HPV types have the potential to improve cervical cancer prevention. Co-infection with multiple HPV infections and unidentifiable HPV types can influence vaccine effectiveness, but the magnitude of effect may be moderated by vaccine cross-protective effects. These benefits must be weighed against the cost of the vaccines in future analyses.  相似文献   
2.

Background

Current prophylactic vaccines against human papillomavirus (HPV) target two of the most oncogenic types, HPV-16 and -18, which contribute to roughly 70% of cervical cancers worldwide. Second-generation HPV vaccines include a 9-valent vaccine, which targets five additional oncogenic HPV types (i.e., 31, 33, 45, 52, and 58) that contribute to another 15–30% of cervical cancer cases. The objective of this study was to determine a range of vaccine costs for which the 9-valent vaccine would be cost-effective in comparison to the current vaccines in two less developed countries (i.e., Kenya and Uganda).

Methods and Findings

The analysis was performed using a natural history disease simulation model of HPV and cervical cancer. The mathematical model simulates individual women from an early age and tracks health events and resource use as they transition through clinically-relevant health states over their lifetime. Epidemiological data on HPV prevalence and cancer incidence were used to adapt the model to Kenya and Uganda. Health benefit, or effectiveness, from HPV vaccination was measured in terms of life expectancy, and costs were measured in international dollars (I$). The incremental cost of the 9-valent vaccine included the added cost of the vaccine counterbalanced by costs averted from additional cancer cases prevented. All future costs and health benefits were discounted at an annual rate of 3% in the base case analysis. We conducted sensitivity analyses to investigate how infection with multiple HPV types, unidentifiable HPV types in cancer cases, and cross-protection against non-vaccine types could affect the potential cost range of the 9-valent vaccine. In the base case analysis in Kenya, we found that vaccination with the 9-valent vaccine was very cost-effective (i.e., had an incremental cost-effectiveness ratio below per-capita GDP), compared to the current vaccines provided the added cost of the 9-valent vaccine did not exceed I$9.7 per vaccinated girl. To be considered very cost-effective, the added cost per vaccinated girl could go up to I$5.2 and I$16.2 in the worst-case and best-case scenarios, respectively. At a willingness-to-pay threshold of three times per-capita GDP where the 9-valent vaccine would be considered cost-effective, the thresholds of added costs associated with the 9-valent vaccine were I$27.3, I$14.5 and I$45.3 per vaccinated girl for the base case, worst-case and best-case scenarios, respectively. In Uganda, vaccination with the 9-valent vaccine was very cost-effective when the added cost of the 9-valent vaccine did not exceed I$8.3 per vaccinated girl. To be considered very cost-effective, the added cost per vaccinated girl could go up to I$4.5 and I$13.7 in the worst-case and best-case scenarios, respectively. At a willingness-to-pay threshold of three times per-capita GDP, the thresholds of added costs associated with the 9-valent vaccine were I$23.4, I$12.6 and I$38.4 per vaccinated girl for the base case, worst-case and best-case scenarios, respectively.

Conclusions

This study provides a threshold range of incremental costs associated with the 9-valent HPV vaccine that would make it a cost-effective intervention in comparison to currently available HPV vaccines in Kenya and Uganda. These prices represent a 71% and 61% increase over the price offered to the GAVI Alliance ($5 per dose) for the currently available 2- and 4-valent vaccines in Kenya and Uganda, respectively. Despite evidence of cost-effectiveness, critical challenges around affordability and feasibility of HPV vaccination and other competing needs in low-resource settings such as Kenya and Uganda remain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号